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Abstract

The problem of detecting intensity changes in images is canonical in vision.
Edge detection operators are typically designed to optimally estimate first or second
derivative over some (usually small) support. Other criteria such as output signal
to noise ratio or bandwidth have also been argued for. This thesis is an attempt to
formulate a set of edge detection criteria that capture as directly as possible the
desirable properties of an edge operator. Variational techniques are used to find a
solution over the space of all linear shift invariant operators. The first criterion is
that the detector have low probability of error i.e. failing to mark edges or falsely
marking non-edges. The second is that the marked points should be as close as
possible to the centre of the true edge. The third criterion is that there should be
low probability of more than one response to a single edge. The technique is used
to find optimal operators for step edges and for extended impulse profiles (ridges
or valleys in two dimensions). The extension of the one dimensional operators
to two dimensions is then discussed. The result is a set of operators of varying
width, length and orientation. The problem of combining these outputs into a single
description is discussed, and a set of heuristics for the integration are given.
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1! 1. lntrodtecion

Edge detection forms the first stage in a very large number of vision modules,

and any edge detector should be formulated in i he appropriate context. However,

the requirements of many modules are similar and it seems as though it should be

possible to design one edge detector that performs well in several contexts. The

crucial first step in the design of such a detector should be the specification of a

set of performance criteria that capture these requirements. The specification of

these criteria and the derivation of optimal operators from them forms the subject

of this report.

The operation of the edge detector is best illustrated by the example in figure

(1.1), which was produced by the detector described in this report. The detector

accepts discrete digitized images and produces an "edge map" as its output. The

edge map includes explicit information about the position and strength of edges,

their orientation, and the "scale" at which the change took place. Although they

are not made explicit, it is also possible to compute the uncertainty in position or

strength of an edge from the quantites in the edge map. The example in figure (1.1)

includes position information only.

A digitized image contains a great deal of redundancy. There is redundancy in

the information theoretic sense (it is possible to compress the sampled data into fewer

bits without changing the reconstructed image significanty). Even after efficient

encoding, much of the what remains is not useful to later vision modules. These

modules typically require structural information, i.e. details of surface orientation

and the material of which the visible surfaces comprise. Where the surfaces are

smooth and of uniform reflectance, shape from shading (Horn 1975) may be applied

to obtain surface orientation. In many other modules such as shape from motion

(Ullman 1979 and Hildreth 1983), shape from contour (Stevens 1980), shape from

texture (Witkin 1980), and Stereo (Marr and Poggio 1979, Grimson 1981) structural

properties of underlying surfaces are inferred from edge contours. In particular,

step changes in intensity are important because they typically correspond to sharp

changes in orientation or material, or to object boundaries. Edge detection is a

5
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Figure 1.1. Positional information provided by the edge detector applied to ani

image of some mechanical parta
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io. ,'1 rii Ions hA I ih preserve ni(st of the structural

, , ~IaVC ihosen the first or second derivative as the

1. .0 t't) edges, and have formed optimal estimates

, , , -. xarples of first derivative operators are the

*e,. \ letd (I170), while Modestino and Fries (1977)

' '.% imiensional Laplacian over a large support.

S g. ;'~..,,d , t I.aplacian of a broad Gaussian since it

',A -t. Alid bandwidth. There are problems with the

A ., ,r, apt f derivative estimation seems to have

!I,-. b mtade specific in chapter 7.

o.... ,f formulations in which the image surface is

. n. I. ,ions and the edge parameters are estimated

...tt,, I'Aamples of this technique include the work of

Of '11- -d Ilaralick (1982). These methods allow more

,irt irw 'N ., i as position and orientation, but since the

C ,MA' !,Mt oniplete, the properties apply only to a projection
, :1.49# s.ifam or to the subspace spanned by the basis functions.

, " , r, fnct s are a major factor in operator performance, especially

r , ' ,, cahze edges.

this report we begin with a traditional model of a step edge in white Gaussian

'O..M, and try to formulate precisely the criteria for effective edge detection. We

atssure, that detection is performed by convolving the noisy edge with a spatial

fuict ion f (r) (which we are trying to find) and by marking edges at the maxima in

the output of this convolution. We then specify three performance criteria on the

output of this operator.

(i) Good detection. There should be a low probablity of failing to mark real edge

points, and low probability of falsely marking non-edge points. Since both

these probabilities are monotonically decreasing functions of the output signal

to noise ratio, this criterion corresponds to maximizing signal to noise ratio.
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(ii) Good localization. The points marked as edges by the operator should be as

close as possible to the centre of the true edge.

(iii) Only one response to a single edge. This is implicitly captured in (i) since

when two nearby operators respond to the same edge, one of them must be

considered a false edge. However, the mathematical form of the first criterion

did not capture the multiple response requirement and it had to be made

explicit.

The first result of the analysis for step edges is that (i) and (ii) are conflicting

and that there is a trade-off or uncertainty principle between them. Broad operators

have good signal to noise ratio but poor localization and vice-versa. A simple

choice of the mathematical form for the localization criterion gives a product of

a localization term and signal to noise ratio that is constant. Spatial scaling of

the function f(x) will change the individual values of signal to noise ratio and

localization but not their product. Given the analytic form of a detection function,

we can theoretically obtain arbitrarily good signal to noise ratio or localization from

it by scaling, but not simultaneously. From the analysis we can concl,de that there

is a single best shape for the function f which maximizes the product and that if we

scale it to achieve some value of one of the criteria, it will simultaneously provide

the maximum value for the other. To handle a wide variety of images, an edge

detector needs to use several different widths of operator, and to combine them in

a coherent way. By forming the criteria for edge detection as a set of functionals

of the unknown operator f, we can use variational techniques to find the function

that maximizes the criteria.

The second result is that the criteria (i) and (ii) by themselves are inadequate

to produce a useful edge detector. It seems that we can obtain maximal signal to

noise ratio and arbitrarily good localization by using a difference of boxes operator.

The difference of boxes (see figure 2.2) was suggested by Rosenfeld and Thurston

(1971) and was used by Herskovits and Binford (1970). If we look closely at the

response of such an operator to a noisy step edge we find that there is an output

maximum close to the centre of the edge, but that there may be many others

nearby. We have not achieved good localization because there is no way of telling

8
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which of the maxima is close:,t to the true edge. The addition of ('rit.rion (iii)

gives an operator that has very low probability of giving more than one maximum

in response to a single edge, and it also leads to a finite limit for the product of

localization and signal to noise ratio.

The third result is an analytic form for the operator. It is the sum of four

complex exponentials and can be approximated by the first derivative of a Gaussian.

A numerical finite dimensional approximation to this function was first found using a

stochastic hill-climbing technique. This was done because it was much easier to write

the multiple response criterion in deterministic form for a numerical ,)timization

than as a functional of f. Specifically, the numerical optimizer provides candidate

outputs for evaluation, and it is a simple matter to count the number of maxima

in one of the outputs. To express this constraint analytically we need to find the

expectation value of the number of maxima in the response to an edge, and to

express tHis as a functional on f, which is much more difficult. The first derivative

of a Gaussian has been suggested before (Macleod 1970). It is also worth noting

that in one dimension the maxima in the output of this first derivative operator

correspond to zero-crossings in the output of a second derivative operator.

Several further results relate to the extension of the operator to two (or more)

dimensions. They can be summarized roughly by saying that the detector should

be directional, and if the image permits, the more directional the better. The issue

of non-directional (Laplacian) versus directional edge operators has been the topic

of debate for some time, compare for example Marr (1976) with Marr and Hildreth

(1980). To summarize the argument presented here, a directional operator can be

shown to have better localization than the Laplacian, signal to noise ratio is better,

the computational effort required to compute the directional components is slight

if efficient algorithms are used, and finally the problem of combining operators

of several orientations is difficult but not intractable. It is, for example, much

more difficult to combine the outputs of operators of different sizes, since their

supports differ markedly. For a given operator width, both signal to noise ratio and

localization improve as the length of the operator (parallel to the edge) increases,

provided of course that the edge does not deviate from a straight line. When
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the image does contain long approximately straight coitours, highly directional

operators are the best choice. This means several operators will be necessary to

cover all possible edge orientations, and also that less directional operators will also

be needed to deal with edges that are locally not straight.

The problem of combining the different operator widths and orientations is

approached in an analogous manner to the operator derivation. We begin with

the same set of criteria and try to choose the operator that gives good signal to

noise ratio and best localization. We set a minimum acceptable error rate and

then choose the smallest operator with greater signal to noise than the threshold

determined by the error rate. In this way the global error rate is fixed while thE

localization of a particular edge will depend on the local image signal to noise ratio.

The problem of choosing the best operator from a set of directional operators is

simpler, since only one or two will respond to an edge of a particular orientation.

The problem of choosing between a long directional operator and a less directional

one is theoretically simple but difficult in practice. Highly directional operators are

clearly preferable, but they cannot be used for locally curved edges. It is necessary

to associate a goodness of fit measure with each operator that indicates how well

the image fits the model of a linearly extended step. When the edge is good enough

the directional operator output is used and the output of less directional neighbours

is suppressed.

While the detection of step edges is the primary goal of the report, chapter 4

gives a general form for the optimality criteria. Using this general form, it is possible

to design optimal operators for arbitrary features. A numerical optimization is

used to find the impulse response of the operator given an input waveform to be

detected. The technique is illustrated by the derivation of operators for ridge, roof

and step edges. Of these the ridge and step detectors have been tested on real

images. The particular problems of extending the one-dimensional ridge operator

to two dimensions, and the problem of integrating the step and ridge detector

outputs are discussed.

Following the analysis we outline some simple experiments which seem to

indicate that the human visual system is performing similar selections (at some

10



COI 1putat iona level), or at least that the corrp utation that it. does perform has

a similar set of goals. We find that adding noise to an image has the effect of

producing a blurring of the image detail, which is consistent with there being several

operator sizes. More interestingly, the addition of noise may enable perception of

changes at a large scale which, even though they were present in the original image,

were difficult to perceive because of the presence of sharp edges. Our ability to

perceive small fluctuations in edges that are approximately straight is also reduced

by the addition of noise, but the impression of a straight edge is not.

As a guide to the reader, chapters 2 and 3 form the core of the analysis for

step edges. They also contain most of the signal theory, and the general reader

may wish to skim over them. The first section of chapter 3 should be read however,

as it includes the translation of the theoretical operator into a practical algorithm.

Chapter 4 is easier going and contains a more general form for the optimality

criteria. It gives examples of the solution of the variational problem for roof and

ridge edges. Chapter 5 is titled "details of implementation" and it may be tempting

to avoid it as being too low-level. However it contains several efficient algorithms

for Gaussian convolution, and may have applications outside the scope of the

present work. Finally, chapters 6 and 7 give weight to the analysis by showing the

performance of the operator on real images and by comparing it both experimentally

and theoretically with some other edge detectors.

11



2. (e-Dinwisional Formulation ror Step Edges

The basic design problem is illustrated in figure (2.1). We are trying to detect

a step edge which is bathed in Gaussian noise, figure (2.1a). We convolve with some

spatial function (2.1b) and mark edges at maxima in the result of this convolution

(2.1c). The objective is to find the spatial function (call it f) which gives the "best"

output, where best is defined by a precise set of criteria on step edge detection.

Some preliminaries on notation ; when we speak of an edge detection "operator"

we mean a mapping from a one or two dimensional intensity function (the image

or a linear slice through it) to an intensity function of the same dimension. If the

operator is linear and shift invariant, then it can be represented by a convolution of

the intensity function with the 'impulse response" (one dimension) or "point-spread

function" (two dimensions) of the operator, which is the result of applying the

operator to a unit impulse at the origin. Shift invariance is clearly a desirable

property of an edge operator. To begin with we will consider only linear shift

invariant operators and later we will apply decision procedures to their outputs,

which will lead to shift invariant non-linear operators. The operator that describes

the mapping from an image to the final representation of edge contours is called

the "edge detector".

The key to the design of an effective edge operator is the accurate evaluation of

its performance. If we can write down the evaluation function in closed mathematical
form, we can apply standard tools such as the calculus of variations to find the
operator that maximizes it. As with many optimization problems, the key to

obtaining a useful answer is to ask the right questions. The edge detection problem

is no exception, as should become apparent in the course of the derivation. Several

passes at the evaluation function had to be made before one was found that closed

all the "loopholes" and excluded operators that were impractical for "obvious"

reasons. This is not to say that the problem became one of finding a question to

fit a proposed solution, but rather that the question was always the same, it was

just very difficult to express in a closed form that was simple enough to yield

a variational problem that could be solved. By way of contrast, it was relatively

easy to obtain a similar solution using a Monte Carlo optimization, because the

12
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b

C

Figure 2.1. (a) The step edge model, (b) The detection function to be derived,
(c) The result of the convolution of this function with the edge.

evaluation could be done directly on the output of a candidate operator. The real

problem then, was the translation of the intuitive performance goals to functionais

that depended directly on the form of the operator. This section describes the main

stages in the trauslation proceps.

13
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2.1. An Uncertainty Principle

We consider first the one dimensional edge detection problem. The goal is to

detect and mark step changes in a signal that contains additive white noise. We

assume that the signal is flat on both sides of the discontinuity, and that there are

no other edges close enough to affect the output of the operator (see figure 2.1).

We need to somehow combine the two goals of accurate detection and localization

into a single evaluation functional. The detection criterion is simple to express

in terms of the signal to noise ratio in the operator output, i.e. the ratio of the

output in response to the step input to the output in response to the noise only.

The localization criterion is more difficult, but a reasonable choice is the inverse of

the distance between the true edge and the edge marked by the detector. For the

distance measure we will use the standard deviation in the position of the maximum

of the operator output. By using local maxima we are making what seems to be
an arbitrary choice in the mapping from linear operator output to detector output.

But the mapping must involve some local predicate, and since we are designing a

linear operator that will respond strongly to step edges, the maxima in its response

are a logical choice.

Let the amplitude of the step be A, and let the noise be n(x). Then the input

signal I(x) can be represented as

(x)= Au +(x)+n(x) (2.1)

where u_ (x) is the unit step function defined as

0, for x < 0

-1, for z>O

Let the impulse response of the operator we are seeking be represented by

the function f(x). Then the output O(xo) of the application of the operator to the

input I(x) is given by the convolution integral,

O(zO) JI(x)f(xo dz (2.2)

14
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We can use the linearity of convolution to split this integral into contributions due

to the step and to noise only. The output due to the step only is (at the centre of

the step, i.e. at x0 = 0)

I-a o
f (x)Au-t(-x) dx = A f(x) dx (2.3)

While the mean squared response to the noise component only will be

E[f +0f (x)n(-x) dx]

where E[y is the expectation value of y. If the noise is white the above

simplifies to

2 +00

E[f+0 f 2 (x)n 2(-2x) dx] = n o__ f2 (z) dx

where n2 E[n2 (x)] for all x, i.e. n2 is the variance of the input noise. We define

the output signal-to-noise ratio as the quotient of the response to the step only and

the square root of the mean squared noise response.

S.N.R. ="Af (x) dx

no Vf - f2(x) dx

From this expression we can define a measure E of the signal to noise

performance of the operator which is independent of the input signal

S.N.R. = A and E - f° °° f(x) dx (2.5)
no f-f2( x)dx

This then is the first part of our dual criterion, and finding the impulse response

f which maximizes it corresponds to finding the best operator for detection only.

For the localization criterion we proceed as follows. Recall that we chose to

mark edges at maxima in the output of the operator. For an ideal step we would

15



expect a single maximum at the centre of the edge. Since the signal J(x) contains

noise we would expect this maximum to be displaced from the true position of the

edge (at the origin in this case). To obtain a performance measure which improves

as the localizing ability of the operator improves, we use the reciprocal of the

standard deviation of the distance of the actual maximum from the centre of the

true edge. This is not an arbitrary choice, as it gives a composite performance

criterion which is scale independent, as we shall see.

A maximum in the output O(xo) of the operator corresponds to a zero-crossing

in the spatial derivative of this output. We wish to find the position x0 where

) = dxo f M f(x)I(xo - x) dx = 0

Which by the differentiation theorem for convolution can be simplified to

J'0 f'(x)I(xo - x) dx = 0

To find x0 we again split the derivative of the output O'(xo) into components

due to the step and due to noise only (call these O', and O" respectively).

O+0() =f f'(z)Au 1(xo - x) dx J 3 Af'(x) dx = Af(xo) (2.6)

The response of the derivative filter to the noise only (at any output point)

will be a Gaussian random variable with mean zero and variance equal to the

mean-squared output amplitude

EIO nx)] _. O 1i2 f' 2 (x) dx (2.7)

We now add the constraint that the function f should be antisymmetric.

An arbitrary function can always be split into symmetric and antisymmetric

components, but it should be clear that the symmetric component adds nothing to

16



tile detection or localizing ability of the operator but will contribute to tile noise

components that affect both. The Taylor expansion of O'(xo) about the origin gives

O'(xo) = Af(xo) %, xoAf'(O) (2.8)

For a zero-crossing in the output 0' we require

O'(Xo) = o' (X0) + O.(Xo) = 0 (2.9)

i.e. o',(xo)- -o' (xa) and E[O 2 (xo)I -- E[O(xo). Substituting for the two

outputs from (2.7) and (2.8) we obtain

E2i f J+002 n2f'2(x) dXE[x'j Az 2 (0 ) 6 0
2  (2.10)

where 6xo is an approximation to the standard deviation of the distance of the

actual maximum from the true edge. The localization is defined as the reciprocal

of 6X0

Localization = A
nlo f -J. f'2 (x) dx

Again we define a performance measure A which is a property of the operator only

Localization = A A - If'(o)I
no +1ff 2 (X)dZ(.1

Having obtained both our desired criteria, we now have the problem of

combining them in a meaningful way. It turns out that if we use the product of the

two criteria we obtain a measure which is both amplitude and scale independent.

This measure is a property of the shape of the impulse response f only, and will be

the same for all functions f, obtained from f by spatial scaling. In fact the choice

of the combination will not affect the form of the solution since the variational

17
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equations depend only on the individual terms in the criteria. The product of the

two criteria is

-2J(f)A(f) = f  f (x) dx If'(o)i (2.12)

To illustrate the invariance of this criterion under changes of scale, we consider

the performance of an operator whose impulse response is fw where fw(x) = f( t.

The performance of the scaled operator is

f+f(2d ) If"(O)i
f+Ef(fdiiw/iAf0012xwx (2.13)

3 where the bracketed terms correspond in order to the detection and localization

criteria. We see from this form that the signal to noise performance of the operator

varies as Vw-w, while the localization varies as the reciprocal of vrw. An operator with

a broad impulse response will have good signal to noise ratio but poor localization

and vice versa. With this form of the composite criterion though, the product of

detection and localization terms is the same for all f,.

This result suggests that there is a class of operators that have optimal

performance and that they are related by spatial scaling. In fact this result is

independent of the choice of combination of the criteria. To see this we assume

that there is a function f which gives the best localization A for a particular E.

That is, we find f such that

E(f) = c1  and A(f) is maximized (2.14)

Now suppose we seek a second function f. which gives the best possible

localization while its signal to noise ratio is fixed to a different value. i.e.

(f0) = c2  while A(f,,) is maximized (2.15)

18



If we dne f,, as before, f,(x) = f( and further if we set

2 21/ W- C2/¢ 1

Then the constraint on f, in (2.15) translates to constraint on f which is

identical with (2.14). So to solve (2.15) we find f such that

1

E(f) = cl and - A(f) is maximized

Which has the same solution as (2.14). So if we find a single such function f,

we can obtain maximal localization for any fixed signal to noise ratio by scaling

f. Thus our choice of the composite criterion was not arbitrary but highlighted a

natural constraint or "uncertainty principle" for detection of step edges in noise.

We can obtain arbitrarily good localization or detection by scaling but not both

simultaneously.

We will find (eventually) that the above analysis is valid but that the criterion

as given is still underspecified. While it does lead to a plausible class of solutions,

performance will be poor because we have so far ignored an important aspect of

the detection process. Namely the detector should not produce multiple outputs in

response to a single edge. In the next section we find the solutions to the above

optimization problem, and highlight their weakness with regard to multiple edge

responses.

2.2. The Optimal Operator for Steps

The optimal edge detection operator has now been defined implicitly by

equation (2.12). All that remains is to find a function which maximizes this large

expression. We must make some simplifications before a solution can be found using

the calculus of variations. We cannot directly find a function which maximizes the

quotient of integrals in equation (2.12) since each depends on f(x). Instead we set

all but one of the integrals to undetermined constant values in an analogous manner

to the method of Lagrange multipliers. We then find the extreme value of the
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remaining integral (since it will correspond to the naximumi iII the t'otal expression)

as a function of the undetermined constants. The values of the constants are then

chosen so as to maximize the value of the remainder of the expression, which is now

a function only of the three constants. Given these constants, we can completely

uniquely specify the function f(x) which gives the global maximum of the criterion.

The second simplification involves the limits of the integrals. The two integrals

in the denominator of (2.12) have limits at plus and minus infinity, while the integral

in the numerator has one limit at zero and the other at minus infinity. Since the

function f should be antisymmetric, we can use the latter limit for all integrals.

The denominator integrals will have half the value over this subrange that they

would have had over the full range. Also, this enables the value of f'(0) to be set as

a boundary condition, rather than expressed as an integral of f". The lower limit

of all the integrals at minus infinity should be set to some finite negative value, say

-W since we will be dealing with an operator of finite extent. These simplifications

allow us to exploit the isoperimetric constraint condition (see Courant and Htilbert

1953). This allows us to combine a set of constraint integrals that share the same

limits as the integral being extremized into a single variational equation.

So the problem of finding the maximum of equation (2.12) reduces to that

of finding the minimum of the integral in the denominator of the S.N.R. term,

subject to the constraint that the other integrals remain constant. By the principle

of reciprocity, we could have chosen to extremize any of the integrals while keeping

the others constant, but the solution should be the same. We seek some function f

chosen from a space of admissible functions that minimizes the integral

f 2(x) dZ (2.16)

subject to

f (x) 0 c,
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LWfP (x) dx =C2

f(O) = C3  (2.17)

The space of admissible functions in this case will be the space of all continuous

functions that satisfy certain boundary conditions, namely that f(O) = 0 and

f(-W) 0 0. These boundary conditions are necessary to ensure that the integrals

evaluated over finite limits accurately represent the infinite convolution integrals.

That is, if the nth derivative of f appears in some integral, the function must be

continuous in its (n-1)st derivative over the range (-oo, +ao). This implies that the

values of f and its first (n-i) derivatives must be zero at the limits of integration,

since they must be zero outside this range.

The functional to be minimized is of the form f' F(x, f, f') and we have a

series of constraints that can be written in the form f' G,(z, f, f') = c. . Since

the constraints are isoperimetric, i.e. they share the same limits of integration as

the integral being minimized, we can form form a composite functional kp(x, f, f')

as a linear combination of the functionals that appear in the expression to be

minimized and in the constraints (Courant and Hilbert 1953). Finding a solution for

this unconstrained problem is equivalent to finding the solution to the constrained

problem. The composite functional is

'I(x, f,f') = F(x, f,f') + XiG(x,f,f') ± X 2G 2(x, f, f) ±

Substituting,

4p(x, f, f') = f 2 _Xf,2 + X2f (2.18)

It may be seen from the form of this equation that the choice of which integral

is extreinized and which are constraints is arbitrary, the solution will be the same.

21

Ll



9

This is an example of what is known as reciprocity in variatioiutl problems. The

choice of an integral from the denominator is simply convenient since the standard

form of the Euler equations applies to minimization problems. The Euler equation

that corresponds to this functional is

d - *f = 0
dx

Where %Pf denotes the partial derivative of %P with respect to f. This gives

2f(x) - 2XIf"(x) + X2 = 0 (2.19)

The general solution of this differential equation is

f(X) 2- + aleox + a 2e - "1  (2.20)

Where a = X1 and the constants al and a 2 are determined by the boundary

conditions f(O) = 0 and f(-W) = 0. When these constraints are added the

function f ca, be written in the form

.(X) X2 cosh c(x+ (2.212 cosh a ThfAx) = - - cosh al (2.21)

From this we can obtain expressions for the signal-to-noise ratio and localization as

a function of the parameters X, and X2. To simplify the expressions we will assume

a width W of 2 and make use of the scaling properties from equation (2.13). This

gives

2a cosh a - 2 sinh a (2.22)

F 2 Cosh 2a - 3a sinh 2a + 4a2

A = sinha (2.23)
a sinh 2a - 2c2
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Both these expressions are functions only of a, and we can investigate the behaviour

of f as a tends to its limiting values 0 and +0o. As a tends to zero we find that

function f tends to a parabola whose equation is

f(X) = -X2Ck 2 (1 _ x 2 ) (2.24)

The corresponding values of signal-to-noise ratio and localization are

e3 (2.25)

When the value of a approaches infinity, we find that the function approaches

a constant over the range (-2,0) (recalling that W = 2), and that the signal-to-noise

ratio tends to 1. This is a very small increase over the corresponding value as a
tended to zero. However, the localization term, -, increases without bound. From

this result it would seem that a difference of boxes function (the antisymmetric

extension of the derived function over the range [-2,2]) gives the best possible

signal-to-noise ratio with arbitrarily good localization. This function is in fact th-

optimal Wiener filter for the step edge.

This operator has been used quite extensively becaus. ,f -s simpi.,:ty and

because it is easy to compute, as in the work of Rosenfeld and Thurston (1971), and

in conjunction with lateral inhibition in Herskovits and Binford (1970). However it

has a very high bandwidth and tends to exhibit many maxima in its response to

noisy step edges, which is a serious problem when the imaging system adds noise

or when the image itself contains textured regions. These extra edges should be

considered erroneous according to the first of our criteria. However, the analytic

form of this criterion was derived from the response at a single point (the centre

of the edge) and did not consider the interaction of the responses at several nearby

points. We need to make this explicit by adding a further constraint to the solution.

2.3. Eliminating Multiple Responses

If we examine the output of a difference of boxes edge detector we find that the

response to a noisy step is a roughly triangular peak with numerous sharp maxima
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in the vicinity of the edge (see figure 2.2). 'I'iese inaxiina are so close together that

it is not possible to select one as the response to the step while identifying the

others as noise. We need to add to our criteria the requirement that the function

f will not have "too many" responses to a single step edge in the vicinity of the

step. We need to limit the number of peaks in the response so that there will be

a low probability of declaring more than one edge. Ideally, we would like to make

the distance between peaks in the noise response approximate the width of the

response of the operator to a single step. This width will be about the same as the

operator width W.

In order to express this as a functional constraint on f, we need to obtain

an expression for the distance between adjacent noise peaks. We first note that

the mean distance between adjacent maxima in the output is twice the distance

between adjacent zero-crossings in the derivative of the operator output. Then we

make use of a result due to Rice (1944, 1945) that the average distance between

zero-crossings of the response of a function 9 to Gaussian noise is

S ) (2.26)

Where R(r) is the autocorrelation function of q. In our case we are looking for the

mean zero-crossing spacing for the function f'. Now since

R(O) + 9 2(x)dz and R"(O) = /+ gf2(x)dz

The mean distance between zero-crossings of f will be

X = (f+-0: X (2.27)

The distance between adjacent maxima in the noise response of f, denoted

x,.,, will be twice x,. We set this distance to be some fraction k of the operator

width.
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Figure 2.2. Responses or difference of boxes and first derivative of Gaussianoperators to a noisy step edge

Xmax -- 2 xzc - kW

This new constraint adds only one term to the composite functional * since

the itegral of f 2 already appears in TF from the localization criterion. While in

th'e original functional this integral appeared in the denominator of a quantity to

be maximized, (i.e. the localization criterion) it now appears in the numerator of

25



the meani distance between maxima, which is a constraint on the solution. It is DOW

no longer clear what the sign of its Lagrange multiplier should be. This leads to

several possible solutions for f as we shall see. The new functional is given by

'l'(z, f, f', f") f X X1f' 2 -X1f2 + X3 f (2.28)

The Euler equation corresponding to a functional of second order is

d d2
- ,,+ --2'%Y = 0

When the above it is substituted into the Euler equation we get

I

2f(x) - 2X×f"(x) + 2X 2 f"'(X) + X3 = 0 (2.29)

The solution of this differential equation is the sum of a constant and a set

of four exponentials of the form eZ where -y derives from the solution of the

corresponding homogeneous differential equation. Now

2 - 2X-f 2 + 2X2-y_ - 0

-± i j -- (2.30)7 2X2  k 2X2 , 1

This equation may have roots that are purely imaginary, purely real or complex

depending on the values of ), and X2. From the composite functional %P we can

infer that X2 is positive (since f"2 is to be minimized) but it is not clear what

the sign or magnitude of X, should be. The Euler equation supplies a necessary

condition for the existence of a minimum, but it is not a sufficient condition. By

formulating such a condition we can resolve the ambiguity in the value of X1. To

do this we must consider the second variation of the functional. Let
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Jjf$ = (x, f, f',f") dx

Then by Taylor's theorem,

Jjf + fg] = Jff] + jJlIf,g) + I 2J2jf + p9, 9)
2

where p is some number between 0 and E, and g is chosen from the space of

admissible functions, and where

J1 [f,gJ = L. *I9 + l'jfg' + 'Pf"l dx

j2[IIgl = /f +  Pf'f'9'2 + %p","9"F (2.31)

+ 2 1 f pgg' + 24'f p,g'g" + 2 'k'jjgg" dx

Note that J1 is nothing more than the integral of g times the Euler equation

for f (transformed using integration by parts) and will be zero if f satisfies the

Euler equation. We can now define the second variation 62J as

b 2 j- J2 [f,gj1
2

The necessary condition for a minimum is 62J > 0. We can substitute for the

second partial derivatives of 'P from (2.29) and we get

L0 92 + 1  + X2 x dx > 0 (2.32)

which we transform using integration by parts to

J g2 - X1ggz + X2g z dx > 0

which can be written as
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2> 2

The integral is guaranteed to be positive if the expression being integrated is

positive for all x, so if

X2 > 1-

4

then the integral will be positive for all x and for arbitrary g, and the extremum

will certainly be minimum. If we refer back to (2.28) we find that this condition

is precisely that which gives complex roots for y, so we have both guaranteed

the existence of a minimum and resolved a possible ambiguity in the form of the

solution. We can now proceed with the derivation and assume four complex roots

of the form y =- ±a ± iw With a, w real, such that

a 2 _ w2 and 4a 2w 2 
- - 04 2  (2.33)

2X2  42

The general solution may now be written

f(x) = alea sin wx + a 2ea, coswX + a 3 e- *' sin wX -- a4 e -  +coswx + c (2.34)

This function is subject to the boundary conditions

f(0) = 0 f(-W) = 0 f'(0) = s f'(-W) = 0

Where s is an unknown constant equal to the slope of the function f at

the origin. These four boundary conditions enable us to solve for the quantities

al through a4 in terms of the unknown constants a, w, c and s. The boundary

conditions may be rewritten

a2 + a4 + c = 0
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ale sinw + a2 e* cosw + ae - ' sinw + a4e- a cosw + c 0

alw + a2c + a3w - a4a S

ale(a sin w + w cosw) + a2e0 (a cosw - w sinw)

+a 3 e- a(-a sin + w cosw) + a4e
-a(-a cosw - w sin w) =(3 0

These equations are linear in the four unknowns a,, a2, a3, a4 and when solved

they yield

a, c/a(a - a) sin 2w - aw cos 2w + (-2w2 sinh a + 2a 2 e- *) sin

+2aw sinh a cos w + we-2a (C + a) - o'w)/4(W 2 sinh 2 a _a 2 Sin2 W)

a2 = c(a(o - a) cos 2w + -- w sin 2w - 2aw cosh a sin w - 2w2 -,.h a cos w

2we- sinh a + o( - a))/4 sinh

a3 = c(-a(a + a) sin 2w + aw cos 2w + (2w 2 sinh a + 2a 2ea) sin w

+2aw sinh a cos w + we 2 a cr- a) - aw)14 (W2 sinh 2 Cf C2 sin 2 W

a4 = c(-(a + a) cos 2w - aiw sin 2w + 2aw cosh a sinw + 2w2 sinh a cos w

-2W2 e' Sinlh a + af a + or))/4(w2 sinh 2 a, _ a2 sin 2 W
(2.36)

where a is the slope s at the origin divided by the constant c. On inspection of

these expressions we can see that a3 can be obtained from al by replacing a by

-a, and similarly for a4 from a2.
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The function f is now parametrized in terms of the constants ct, w, a and c.

We have still to find the values of these parameters which maximize the quotient

of integrals that forms our composite criterion. To do this we first express each

of the integrals in terms of the constants. Since these integrals are very long

and uninteresting, they are not given here but for the sake of completeness they

are included in Appendix I. We have reduced the problem of optimizing over

an infinite-dimensional space of functions to a non-linear optimization in three

variables a, w and c (as expected, the combined criterion does not depeid on c).

Unfortunately the resulting criterion, which must still satisfy the multiple response

constraint, is probably too complex to be solved analytically, and numerical methods

must be used to provide the final solution.

In fact there is really no best function f for a given W because the shape of f

will depend on the multiple response constraint, i.e. it will depend on how far apart

we force the adjacent responses. Figure (2.3) shows the operators that result from

particular choices of this distance. Recall that there was no single best function for

arbitrary w, but a class of functions which were obtained by scaling a prototype

function by w. We will want to force the responses further apart as the signal to

noise ratio in the image is lowered, and it is not clear what the value of signal

to noise ratio will be for a single operator. However, this design is based on the

use of multiple widths of operator arid on a decision procedure which selects the

smallest operator that has an output signal to noise ratio above a given threshold.

This means that all operators will spend most of their time operating close to

their output E thresholds. We should therefore try to choose a spacing which gives

acceptable multiple response behaviour under these conditions.

A rough estimate for the probability of a spurious maximum in the

neighbourhood of the true maximum can be formed as follows. Recall that maxima

in an operator output correspond to zero-crossings in the derivative of this output.

If we look at the first derivative of the response to an ideal step we find that

it is approximately linear near the centre of the step. There will be only one

zero-crossing if the slope of this response is greater than the slope of the response

to noise only. This latter slope is just the second derivative of the response to noise
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only, and is a Gaussian random variable with standard deviation

as =

while the slope of the zero-crossing at the centre of the edge is Af'(0). The

probability pmthat the former slope exceeds the latter is given in terms of the

normal distribution function 40

PM - O I (Af(O))
\as

We can choose a value for this probability as an acceptable error rate and this

will determine the ratio of f(O) to as. Rearranging we obtain.

AIf'(O)I = (-(1 - P) (2.37)

no Vf 'f" 2 (x) dx

And we can see the explicit dependence of this constraint on the image signal

to noise ratio. We can eliminate this dependence by relating the probability of a

multiple response pm to the probability of falsely marking an edge pf where we

define

P=

and we have finally that

lf'(O)j - k f2 f(x) dx (2.38)

\/ ~ xO() dx f-f2(x) dx

where k is a constant determined by the values or the two probabilities. If we choose

to set pm equal to pf th,.ii the value of k is one. Unfortunately, the largest value of

k that could be obtained using the constrained numerical optimization was about

.58. This corresponds to an inter-maximum spacing of 1.2 (in units of W). This is
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the final form of linear operator that we will use. It is illustrated in the last of the

series of graphs in figure (2.3). Its performance is given by the product of E and A

and it has the value

F^ = 1.12 (2.39)

Inspection of the shape of this operator in figure (2.3) suggests that it may be

possible to approximate it using a first derivative of a Gaussian G' where

The reason for doing this is that there are very efficient ways to compute the

two dimensional extension of the filter if it can be represented as some derivative

of a Gaussian. This will be discussed in detail in chapter 5. We now compare the

performance of a first derivative of a Gaussian filter with the optimal operator. The

impulse response of the filter is now given by

f(x) --- exp (2.40)

and tae terms in the performance criteria have the values

1
If'(o)I = 1

J0f(x)dz = 1

f+ f 2(x) dx =

40y3
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f112 (x) dx = 85  (2.41)

The overall performance index for this operator is

EA = _ ; 0.92 (2.40)

While the k value for this filter is, from (2.38)

k F4- _ 0.51

S1-5

The performance of this operator is worse than the optimal operator by about

20%, and its multiple response measure k, is worse by about 10%. It would probably

be difficult to detect a difference of this magnitude by looking at the performance

of the two operators on real images, and because the first derivative of Gaussian

operator can be computed with much less effort in two dimensions (but see section

5.2), it has been used exclusively in experiments. The impulse responses of the two

operators can be compared in figure (2.4).

2.4. Finding an Operator by Stochastic Optimization

The previous section contained the derivation of a "closed form" for an optimal

edge detector for step edges. Even in the derivation of this closed form for the

operator, a numerical optimization was necessary to obtain the coefficients that

appear in its analytic form. We saw that this method required the solution of

very complex simultaneous systems of non-linear equations. It is likely that if the

technique were applied to other problems it would seldom be possible to find closed

form solutions for the operators. However, this does not mean that a useful operator

cannot be derived using these techniques. There are two alternative approaches,

both of which were used in the derivation of the step edge operator, and which can

be applied when the expressions become too complex to be solved.

(i) The first of these was used in the previous section and involves the use of

numerical methods for the determination of some finite number of parameter
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Figure 2.4. (a) The optimal step edge operator, (b) The first derivative of a
Gaussian

values once the solution has been reduced to a parametric form. In fact

even infinite dimensional objects, e.g. the impulse response of a filter, can be

approximated by a finite dimensional discrete filter if appropriate constraints

on the bandwidth (of the infinite filter) are met. All that is required is a

deterministic criterion which can be applied to the parametric form of the

operator and which measures the "goodness" of the operator with respect to

that criterion.

(ii) The second method is necessary when it is not even possible to write down

a closed form for the criterion of optimality. This problem arises when the

image model contains some random component (e.g. Gaussian noise) and it

is then necessary to form criteria that reflect some meaningful statistics on
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the behaviour of operator on an ensemble of images. Gaussian independent

random processes are particularly easy to analyse, but even with Gaussian

statistics, the closed form criteria for step edges led to very complex solutions.

However, in the further work section of this thesis we will propose a method for

transforming problems that involve certain stationary processes into equivalent

probelms involving only Gaussian independent processes.

In fact in the work leading up to this report, the second method was used successfully

before a closed form solution using the first method was obtained. This is almost

certainly the rule rather than the exception. While at best the stochastic method

leads to an approximate solution, and may not be feasible if the parameter space

is poorly conditioned, it is still felt that it is a useful technique and may guide the

search for an analytic solution.

The stochastic method begins, as did the analytic method, with a model

of the image. Again we consider a step edge with superimposed white Gaussian

noise. We seek a filter f which maximizes some criterion but in this case we

cannot characterize the filter by its (infinite) impulse respore. Instead we consider

a discrete filter i.e. we represent the filter by its impulse response sampled at

positions 0, r, 2r etc. Provided that the bandwidth of the corresponding continuous

impulse response filter is less than the Nyquist frequency, -1, the contlnuous filter

is completely described by its discrete approximation. It turns out that for the step

edge operators, which have small bandwidth, only about 12 samples are necessary.

This was not known before the optimization was done and 32 samples were used

for the discrete filter.

The optimization algorithm is essentially a hill-climbing search over the space

of possible filters. It proceeds by continuously iterating through the following steps

(i) Create a (discrete) noisy edge by adding Gaussian random numbers to the

sampled values of a step edge.

(ii) Convolve the filter with this edge, and evaluate the response.

(iii) Perturb the filter coefficients (sampled values) by a small amount
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(iv) Convolve this new filter with the edge, and evaluate the new response.

(v) Change the filter based on the effects of the perturbation in (iii).

Note that this procedure is not guaranteed to lead to a solution even in the

case where the analytic solution space is convex. It differs from deterministic

hill-climbing procedures in that the "hills" (the contours of constant evaluation

in parameter space) are not fixed but vary from iteration to iteration. There is a

random component in any particular evaluation caused by the presence of noise in

the modelled image. We can only say that the limit of the mean of a number of

such evaluations will be the contours that would be obtained from the deterministic

criteria. In fact the magnitude of the changes caused by image variations greatly

overshadowed the magnitude of the changes due to the perturbations in the filter

coefficients. It was therefore important to apply the perturbed and original filters

to the same image.

To see when this method should converge, we assume that there exists a

deterministic evaluation function F over the parameter space, and such that we

can locally estimate the evaluation of an n-tuple of parameters 7 as

El= F()+ r

where r is a random variable from some unknown distribution which models

the effects of the image noise. If we now perturb the filter coefficients by some small

60, we obtain the new evaluation

E 2 = f(P + 6P) + r

assuming that the value of r is constant (the image has not changed) over some

small neighbourhood of P. If we subtract E, from E 2 and divide by f673 we obtain

E2 - El F( + 6) - F() (2.43)
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Now

lim F( -+ 6P) - F(3) - VF(P) -

where U is a unit vector in the direction of 6P. By using n normal perturbations

6P, with n corresponding unit vectors di and forming the sum

(E 2  -i) Z(VF(P). )ii = VF(P) (2.44)

we have formed an estimate of the gradient of the evaluation function at the

point P in parameter space. Another way of forming an estimate of V P is to use

perturbations which are randomly distributed. By randomly distributed we mean

that each component of 6P is an independent random variable with zero mean
and variance a12 Then the expectation value of the perturbation weighted by the

change in evaluation is

E((E2 - E,)SPI = VF(P)a, (2.45)

So we can also achieve an estimate of the gradient of F by making random

perturbations in the filter coefficients and weighting those perturbations by the

change in evaluation. This method provides a more uniform coverage of the

neighbourhood around a single parameter space point than does a particular choice

of orthonormal perturbations. The implementation uses random perturbations and

a short term averaging filter to obtain an estimate of the gradient of F over several

iterations. The filter used has a single pole (i.e. its response to an impulse is an

exponentially decaying sequence), and can be described by the difference equation

(E2j - Ej)6, (2.46)

where 0, is the estimate of the gradient of f at the jth iteration, and the subscripted

quantities E2,, F'j, and 6P, are the values of these quantities at the jth iteration. Pl

is a time constant between 0 and 1, and it determines the "inertia" of the system.
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The algorithm performs a simple hill-climbing by taking the estimate of the

gradient at each iteration and adding a multiple of it to the current value of P.

However we have (necessarily) added a time constant in the estimator for VF so

that we can obtain a continuously updating estimate while simultaneously climbing

using the existing estimate. We now have a system with both "inertia" from the

average over the previous iterations and a "viscosity" caused by the fact that this

average decays with time (assuming /3 is less than 1). Therefore it is possible for

it to overshoot a minimum, or even to oscillate several times before settling at the

minimum. It was necessary to set the time constant empirically in order to obtain

accurate estimates of gradient without excessive overshoot. The behaviour of the

system is roughly analogous to a ball rolling along a contoured surface under the

influence of gravity, with perfectly viscous drag.

The major reason for resorting to stochastic methods for the optimization was

that the evaluation criterion is a function of a particular response, rather than an

estimate of the behaviour of the filter on a large set of inputs. But the abstract

criteria should be the same. The heuristic criterion should evaluate both the error

rate and the localizing abilW - of the operator. The criterion actually used is

E, 5011- az- dma (2.47)

where nmaz is the number of local maxima that occur in a fixed neighbourhood

of the edge, and dmaz is the distance of the strongest maximum from the centre of

the true edge. Note that the two terms in the expression are "penalty" measures,

hence the two negations.

Figure (2.5) shows the algorithm converging to a solution after the filter has

been initialized to a difference of boxes. In figure (2.6) the initial filter coefficients are

random and independent. It is worth comparing figure (2.5) with figure (2.3), which

showed the best analytic form of the operator for various inter-maximum distances.

It seems that the stochastic method moves through parameter space in such a way

that it passes through several of these analytic optimal forms before reaching a

global extremnum. 'Fhe two methods produce similar solutions even though their
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criteria are slightly different. This is strong evidence that the form of the optimal

detector is robust with respect to the actual choice of criteria, so long as the criteria

depend on both error rate and localizing ability. We will see further evidence of

this in the work of Shanmugarn et al (1979) in a later chapter.
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Figure 2.5. Convergence of the stochastic optimization procedure after
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3. Two or More Dimensions

In one dimension we can characterise the step edge in space with one position

coordinate. In two dimensions an edge also has an orientation. In this chapter we

will use the term "edge direction" to mean the direction of the tangent to the

contour that the edge defines in two dimensions. Suppose we wish to detect edges

of a particular orientation. We create a two-dimensional mask for this orientation

by convolving a linear edge detection function aligned normal to the edge direction

with a projection function parallel to the edge direction. A substantial saving in

computational effort is possible if the projection function is a Gaussian with the

same u as the (first derivative of the) Gaussian used as the detection function.

It is possible to create such masks by convolving the image with a symmetric

two-dimensional Gaussian and then differentiating normal to the edge direction. In

fact we do not have to differentiate normal to every possible edge direction because

the slope of R smooth surface in any direction can be determined exactly from its

slope in two directions. The simplest form of the detector uses this method.

After the image has been convolved with a symmetric Gaussian, the edge

direction is estimated from the gradient of the smoothed image intensity surface.

The gradient magnitude is then non-maximum suppressed in that direction. The

directional non-maximum suppression is equivalent to the application of the

following non-linear differential predicate

a
2

-G*I = 0
8nD2

where n = JV! 41, which has the same zero-crossings as

VS.V(VS.VS) = 0 (3.1)

where S = G * I and where I is the image and G is a symmetric Gaussian. This is

readily varified by using the substitution
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aS =nVS

an Inl

The form of non-linear second derivative operator used in (3.1) turns out to

be the same as that proposed by Havens and Strikwerda (1983), Torre and Poggio

(1983), and Yuille (1983). It also appears in Prewitt (1970) ii the context of edge

enhancement.

This operator actually locates either maxima or minima, by locating the

zero-crossings in the second derivative in the edge direction. In principle this

operator could be used to implement an edge detector in an arbitrary number of

dimensions, by first convolving the image with a symmetric n-dimensional Gaussian.

The convolution with an n-dimensional Gaussian is highly efficient because the

Gaussian is decomposable into n linear filters.

There are other more pressing reasons for using a smooth projection runctI

such as a Gaussian. When we apply a linear operator to a two dimensional image,

we form at every point in the output a weighted sum of some of the input values. Vor

the edge detector described here, this sum will be a difference between local averag,,s

of the different sides of the edge. This output, before non-maximum suppression,

represents a kind of moving average of the image. Ideally we would like to use

an infinite projection functioa, but real edges are of limited extent. It is therefore

necessary to window the projection function (see Hamming 1983). If the window

function is abruptly truncated, e.g. if it is rectangular, the filtered image will not be

smooth because of the very high bandwidth of this window. This result is analogous

to the Gibbs phenomenon in Fourier theory. When non-maximum suppression is

applied these variations will tend to produce edge contours that "wander" or that

in severe cases are not even continuous.

The solution is to use a smooth window function. In signal processing, typical

windows used are the Hamming and Hanning windows. The Gaussian is a reasonable

approximation to both of these, and it certainly has very low bandwidth for a

given spatial width (The Gaussian is the unique function with minimal product

of bandwidth and frequency). The effect of the window function becomes very
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marked for large operator sizes and it is probably the biggest single reason why

operators with large support were not practical until the work of Marr and

Hildreth on the Laplacian of Gaussian. The perceptive reader will probably see

the similarity between these smoothness constraints in the projection function to

preserve continuity of contours in the edge direction, and the smoothness of the

detection function implied by the addition of the multiple response constraint.

It is worthwhile here to compare the performance of this kind of directional

second derivative operator with the Laplacian. First we note that the two-

dimensional Laplacian can be decomposed into components of second derivative in

two arbitrary orthogonal directions. If we choose to take one of the derivatives in

the direction of principal gradient, we find that the operator output will contain

one contribution that is essentially the same as the operator described above, and

also a contribution that is aligned along the edge direction. This second component

contributes nothing to localization or detection, (the surface is roughly constant in

this direction) but increases the output noise. This will be verified analytically in

chapter 7.

A version of the detector which used the Gaussian convolution followed by

directional non-maximum suppression has been implemented and performed very

well. Examples of its output will be given in chapter 6. While the complete

detector includes multiple operator widths, orientations and aspect ratios, they are

a superset of the operators used in the simple detector. In typical images, most of

the edges are marked by the operators of the smallest width, and most of these by

non-elongated operators. However, as we shall see in the following sections, there

are cases when larger or more directional operators should be used, and that they

offer considerably better performance when they are applicable. The key to making

such a complicated detector produce a coherent output is in the design of effective

decision procedures for choosing between operator outputs at each point in the

image.

3.1. The Need for Multiple Widths

Having determined the optimal shape for the operator,we now face the problem
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of choosing the width of the operator so as to give the best detection/localization

trade-off in a particular application. In general the signal to noise ratio will be

different for each edge within an image, and so it will be necessary to incorporate

several widths of operator in the scheme. The decision as to which operator to

use must be made dynamically by the algorithm and this requires a local estimate

of the noise energy in the region surrounding the candidate edge. Once the noise

energy is known, the signal to noise ratios of each of the operators will be known. If

we then use a model of the probability distribution of the noise, we can effectively

calculate the probability of a candidate edge being a false edge (for a given edge,

this probability will be different for different operator widths).

Since the a-priori penalty associated with a falsely detected edge is independent

of the edge strength, it is appropriate to threshold the detector outputs on probability

of error rather than on magnitude of response. Once the probability threshold is

set, the minimum acceptable signal to noise ratio is determined. However, there

may be several operators with signal to noise ratios above the threshold, and in this

case the smallest operator should be chosen, since it gives the best localization. We

can afford to be conservative in the setting of the threshold since edges missed by

the smallest operators may be picked up by the larger ones. Effectively the trade-off

between error rate and localization remains, since choosing a high signal to noise

ratio threshold leads to a lower error rate, but will tend to give poorer localization

since fewer edges will be recorded from the smaller operators.

In summary then, the first heuristic for choosing between operator outputs

is that small operator widths should be used whenever they have sufficient E.

This is similar to the selection criterion proposed by Marr and Hildreth (1980)

for choosing between different Laplacian of Gaussian channels. In their case the

argument was based on the observation that the smaller channels have higher

resolution, i.e. there is less possibilty of interference from neighbouring edges. That

argument is also very relevant in the present context, as to date there has been no

consideration of the possibility of more than one edge in a given operator support.

Interestingly, Rosenfeld and Thurston (1971) proposed exactly the opposite criterion

in the choice of operator for edge detection in texture. The argument given was
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that the larger operators give better averaging and therefore (presumably) better

signal to noise ratio.

Taking this hueristic as a starting point, we need to form a local decision

procedure that will enable us to decide whether to mark one or more edges when

several operators in a neighbourhood are responding. If the operator with the

smallest width responds to an edge and if it has a signal to noise ratio above the

threshold, we should immediately mark an edge at that point. We now face the

problem that there will almost certainly be edges marked by the larger operators,

but that these edges will probably not be exactly coincident with the first edge. A

possible answer to this would be to suppress the outputs of all nearby operators.

This has the undesirable effect of preventing the large channels from responding to

"fuzzy" edges that are superimposed on the sharp edge.

Instead we use a "feature synthesis" approach. We begin by marking all

the edges from the smallest operators. Frorm these edges, we synth, size the large

operator outputs than would have been produced if these were the only edges in the

image. We then compare the actual operator outputs to the synthetic outputs. We

mark additional edges only if the large operator has significantly greater response

that what we would predict from the synthetic output. The simplest way to produce

the synthetic outputs is to take the edges marked by a small operator in a particular

direction, and convolve with a Gaussian normal to the edge direction for this

operator. The a of this Gaussian should be the same as the a of the large channel

detection filter.

This procedure can be applied repeatedly to first mark the edges from the

second smallest scale that were not marked by at the first, and then to find the

edges from the third scale that were not marked by either of the first two etc.

Thus we build up a cumulative edge map by adding those edges at each scale that

were not. marked by smaller scales. It turns out that in many cases the majority

of edges will be picked up by the smallest channel, and the later channels mark

mostly shadow and shading edges, or edges between textured regions.

47.1ilfflo.



3.2. The Need for Directional Operators

So far we have assumed that the projection function is a Gaussian with the

same a as the Gaussian used for the detection function. In fact both the detection

and localization of the operator improve as the length of the projection function

increases. We now prove this for the operator signal to noise ratio. The proof for

localization is similar. We will consider a step edge in the x direction which passes

through the origin. This edge can be represented by the equation

l(x,y) = Au-i(y)

where u - is the unit step function, and A is the amplitude of the edge as before.

Sujppose that, there is additive Gaussian noise of mean squared value ng0 per unit

area. If we convolve this signal with a filter whose impulse response is f(x, y), then

the response to the edge (at the origin) is

J J /+,f(X,y) dxdy

The root mean squared response to the noise only is

noo +-j + 0J f 2(x, y) dx dy)i

The signal to noise ratio is the quotient of these two integrals, and will be

denoted by E. We have already seen what happens if we scale the function normal

to the edge (equation 2.13). We now do the same to the projection function by

replacing f(x,y) by f(x, Y). The integrals become

f (,Y) d dy f(Z, ,) I d dy

no°(+00J+OD f2(x, Y) dx dy) - nao(!-+ 0f +00 f2(X, yI) I dx dy,)'
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And the ratio of the two is now /IE. The localization A also improves as

Vl. It is clearly desirable that we use as large a projection function as possible.

There are obviously practical limitations on this, in particular all edges in an image

are of limited extent, and few are perfectly linear. However, most edges continue

for some distance, in fact much further than the 3 or 4 pixel supports of most

edge operators. Even curved edges can be approximated by linear segments at a

small enough scale. Considering the advantages, it is obviously preferable to use

the directional operators whenever they are applicable. The only proviso is that

the detection scheme must ensure that they are used only when the image fits a

linear edge model.

The present algorithm tests for applicability of each directional mask by

forming a goodness of fit estimate. It does this at the same time as the mask itself

is computed. An efficient way of forming long directional masks is to sample the

output of non-elongated masks with the same direction. This output is sampled at

regular intervals in a line parallel to the edge direction. If the samples are close

together (less than 2c apart), the resulting mask is essentially flat over most of its

range in the edge direction and falls smoothly off to zero at its ends. Two cross

sections of such a mask are shown in figure (3.1). In this diagram (as in the present

implementation) there are five samples over the operator support.

Simultaneously with the computation of the mask, it is possible to establish

goodness of fit by a simple squared-error measure. Since the quantity being estimated

to produce the mask is the average of some number of values, the sq,iared error is

just the variance of these values. We then eliminate those operator outputs whose

variance is greater than some fraction of the squared output. Where no directional

operator has sufficient goodness of fit at a point, the algorithm will test the outputs

of less directional operators. This simple goodness of fit measure is sufficient to

eliminate the problems that traditionally plague directional operators, such as false

responses to highly curved edges and extension of edges beyond corners, see lildreth

(1980).

This particular form of projection function, that is a function with constant

value over some range which decays to zero at each end with two roughly half-
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Figure 3.1. Directional step edge mask (a) Cross section parallel to the edge
direction, (b) Cross section normal to edge direction (c) Two-dimensional impulse
responses of several masks.

Gaussians, is very similar to a commonly used extension of the Hanning window.

This latter function is flat for some distance and decays to zero at each end with

two half-cosine bells (Blingham, Godfrey and Tukey 1967). We can therefore expect

it to have good properties as a moving average estimator, which as we saw at He

start of the chapter, is an important role fulfilled by the projection function.

All that remains to be done in the design of directional operators is the

specib . tion of the number of directions, or equivalently the angle between two
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adjacent directions. To determine the latter, we need to determine the angular

selectivity of a directional operator as a function of the angle 0 between the edge

direction and the preferred direction of the operator. Assume that we form the

operator by taking an odd number 2N + I of samples. Let the number of a sample

be n where n is in the range -N ... +N. Recall that the directional operator

is formed by convolving with a symmetric Gaussian, differentiating normal to the

preferred edge direction of the operator, and then sampling along the preferred

direction. The differentiated surface will be a ridge which makes an angle 0 to the

preferred edge direction. Its height will vary as cosO, and the distance of the nth

samph, from the centre of the ridge will be nd sin 0 where d is the distance between

samples. The normalized output will be

Cos 0__ N (nd sino2
0,os (0) exp - -- -- i

1O-2N 1 n=-N 2G 2

If there are m operator directions, then the angle between the preferred

directions of two adjacent operators will be 180/m. The worst case angle between

an edge and the nearest, preferred operator direction is therefore 90/m. In the

current implementation the value of d/u is about 1.4 and there are 6 operator

directions. The worst case for 0 is 15 degrees, and for this case the operator output

will fall to about 85% of its maximum value.

3.3. Noise Estimation

To estimate noise from an operator output, we need to be able to separate its

response to noise from the response due to step edges. Since the performance of

the system will be critically dependent on the accuracy of this estimate, it should

also be formulated as an optimization. Wiener filtering is a method for optimally

estimating one component of a two-component signal, and can be used to advantage

in this application. It requires knowledge of the autocorrelation functions of the

two components and of the combined signal. Once the noise component has been

optimally separated, it. is squared and locally averaged. In fact Ne can further

improve the separation in the smoothing phase, since when we use the noise estimate

we will be comparinig it. to the response of the edge 'tection operator at a local
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maximum. We know that there is an edge near the centre of the detection operator,

and that this edge will be producing a known response in the noise separation filter

(the noise separation will not be perfect). We can use the positional correspondence

of the two responses to make the local averaging filter orthogonal to the output

due to a step edge at its centre. Ideally it should give zero output at the centre of

an edge when there is no noise present.

Let gl(x) be signal we are trying to detect (in this case the noise output),

and g2(z) be some disturbance (the edge response), then denote the autocorrelation

function of gi as R 1 1(r) and that of g2 as R 22 (r), and their cross-correlation as

R 12 (r), where the correlation of two real functions is defined as follows

Rij (r) = J-0gx)g(x +r) dx

We assume in this case that the signal and disturbance are uncorrelated, so

R1 2 (r) = 0. The optimal filter is K(z) where K is defined as follows (Wiener 1949)

R 11 (r) = f_0 (Rll(r - x) + R 22 (r - x))K(x) dx

Since the autocorrelation of the output of a filter in response to white noise is

equal to the autocorrelation of its impulse response, we have

Rii(x) = k3 2 )exp(- 2 )

If g is the response of the operator derived in (2.38) to a step edge then we

will have g2(x) = k exp( - )

R22(X) =k 2 exp( X2

In the case where the amplitude of the edge ic large compared to the noise,

R22 - R1 1 is approximately a Gaussian and R11 is the second derivative of a

Gaussian of the same a. Then the optimal form of K is the second derivative of a

delta function.
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'[he filter K above is convolved with the output of the edge detection operator

and the result is squared. The next step is the local averaging of the squared noise

values. The averaging filter is basically a broad Gaussian, but its accuracy can be

improved in this application by orthogonalizing it to the step edge response. Let

the averaging filter be expressed as AI(x) - A2 (X) where

Ai(x) = a1 exp( 2-- )

A 2 (x) a2 eXP( 7)

and the o in the expression for A 2 is the same as for the detection filter.

(Actually, the optimal shape for A 2 is the square of the second derivative of a

Gaussian, but the use of this function makes the scheme very sensitive to small

variations in the position of the detection filter maximum). The constants a, and
a2 are chosen so that the net response to the squared filtered step response is zero,

i.e.

f+(A( -x) + A2(-))(- - ) 2exp(- X2dz = 0

Having formed an estimate of the local noise energy at every point, we can

now deal with the problem of setting operator thresholds to achieve minimal error

rate. This is the subject of the next section.

3.4. Thresholding with Hysteresis

Virtually all edge detection schemes to date use some form of thresholding.

If the thresholds are not fixed a priori but are determined in some manner by

the algorithm, the detector is said to employ adaptive thresholding. The solitary

exception is the Marr llildreth scheme, where edges are marked at any zero-crossing

in the output of a Laplacian of Gaussian filter. This is not a practical proposition

because there is a very high density of zero-crossings in the response to pure noise

even if the noise has vanishing energy. Most practical implementations of this

scheme use thresholding based on the slope of the zero-crossing.
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The present algorithm sets tharesholds based on local estimates of image noise

and therefore falls into the class of adaptive thresholding algorithms. It has the

additional complexity that it makes use of two thresholds to deal with the problem

of streaking. Streaking is the breaking up of an edge contour caused by the operator

output fluctuating above and below the threshold along the length of the contour.

Suppose we have a single threshold set at Ath, and that there is an edge in the

image such that an operator responds to it with mean output amplitude of Ath.

There will be some fluctuation of the output amplitude due to noise, even if the

noise is very slight. We expect the contour to be above threshold only about half

the time. This leads to a broken edge contour. While this is a pathological case,

streaking is a very common problem with thresholded edge detectors. It is very

difficult to set such a threshold so that there is small probability of marking noise

edges while retaining high sensitivity. An example of the effect of threholding with

hysteresis is given in figure (3.2).

One possible solution to this problem, used by Pentland (1982) with Marr-

Hildreth zero-crossings, is to average the amplitude of a contour over part of its

length. If the average is above the threshold, the entire segment is marked. If the

average is below threshold, no part of the contour appears in the output. The

contour is segmented by breaking it at maxima in curvature. This segementation ;.s

necessary in the case of zero-crossings since the zero-crossings always form closed

contours, which obviously do not always correspond to contours in the image.

In the current algorithm, no attempt is made to pre-segment contours. Instead

the thresholding is done with hysteresis. If any part of a contour is above a high

threshold, that point is immediately output, as is the entire connected segment of

the contour which contains the point and which lies above a low threshold. The

probability of streaking is greatly reduced because for a contour to be broken it

must now fluctuate above the high threshold and below the low threshold. Also

the probability of false edges is reduced because the high threshold can be raised

without risking streaking. The ratio of the high to low threshold is usually in the

range two or three to one.
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Figure 3.2b. Image thresholded at 2 Th,
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Figure 3.2c. Image thresholded using both the thresholds in figures 3.2a and
3.2b
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3.5. Sensitivity to Smooth Gradients

It has been pointed out in Binford-Horn (1973) that images frequently contain

slow gradients, and that edge detectors which are sensitive to these gradients are

prone to mark multiple edges in regions where the gradient is high. The edge operator

derived in the last chapter will be sensitive to image gradients and we should now

ask if it is possible to eliminate this sensitivity without prejudicing performance.

One possibility would be to use an operator which is a linear combination of

two different widths of the optimal operator, such that the resulting operator is

insensitive to gradients. Suppose the function f is given by

X exp -- exp(-z'f~x W -o (2r o 3 "2A

01 2 o 2

Then we find that

J0 x f(x) dx = v -- /7 = 0

So this function will certainly be insensitive to gradients, and its performance

will be given by equation (2.12). The signal to noise ratio and localization are now

A = ~ ~ ~ + 4(Cr2 +I 8or2) + 4 3
- )24Vge~2a,' 2 1 2 O2 - 3 32

2 + 2 4 + oo + 31 4 +27r ) -

Viio-la2r2--i2 + c2(3o' + 6ala 2 -+r 3oala +q 3a'o"2 1 6a 2 2 1a) 24 ~a

Asymptotically as a2 tends to infinity, the above expressions tend to the
limiting values

S 2ufand A 4
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Which gives the same overall performance as a simple first derivative of

Gaussian as given by equation (2.40). In practice a value of G2 of around 3a, is used

to reduce the computational expense and to prevent the operator becoming too

sensitive to nearby edges because of its large support. The overall performance EA

is reduced by about 30% in this case. Note also that as O"2 approaclics al we obtain

a third derivative of a Gaussian, which is similar to the operator sometimes used

to estimate the strengths of Marr-Hildreth zero-crossings. But the performance is

reduced in this case, as will be shown in chapter 7.

The fact that f is insensitive to gradients implies that f may be expressed as

the derivative of a function g which has zero mean value, and which is symmetric

because f is antisymmetric. A symmetric function g with zero mean value may be

thought of as a lateral inhibition operator as described by Binford (1981). Lateral

inhibition was proposed as a mechanism for reducing sensitivity to gradients. But

the form of the lateral inhibition operator was not determined analytically when

in fact it has a direct effect on the performance.
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4. Finding Lines and Other Features

Chapters two and three described in some detail the derivation of an optimal

operator for step edges in Gaussian noise. The derivation of the analytic form of

this operator was rather tedious and in the end, we arrived at a parametric form

and had to resort to numerical methods to find the best values for the parameters.

The alternative method of finding an operator was by a brute force stochastic

optimization which did not even use an analytic expression for the criteria of

optimality. The latter method was simpler to implement, but took much longer to

arrive at a solution. It is in theory more general, because to find an operator for a

different input waveform, only its edge model has to be be changed. This has not

been tried, and the time expenditure necessary to modify the stochastic optimizer

and arrive at a solution did not seem justified.

It would be very useful if there were a more general method which gave a fast

solution and was simple to adapt to new waveforms. There are several reasons for

considering optimal detectors for other features. Firstly, it has been pointed out

(Herskovits and Binford 1970, Marr 1976) that step edges are not the only kind of

intensity change that occur and are important. In particular they mention "roof"

and "bar" profiles as being common in real images. Each of these poses a new

problem in finding an optimal detector.

Even if we are considering step edge profiles, a strong case can be made for

the use of non-white Gaussian noise models. We can remove the spectral flatness

constraint and still use the same design technique as long as the noise can be

modelled as the output of some filter in response to white Gaussian noise. In fact

if we know the autocorrelation of the random process, it is possible to derive a

causal filter (linear predictor) which has the same autocorrelation. By applying the

inverse of this filter to the noisy waveform to be detected, we obtain a different

waveform, but it is now bathed in white Gaussian noise. We can apply the same

design techniques to this new waveform, and the optimal detector for the original

waveform is the convolution of the detector for the filtered waveform and the inverse

noise filter. So we have mapped the problem of finding step edges in non-white

Gaussian noise to that. of finding other edge profiles in white noise.
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4.1. General Forin for the Criteria

When we derived the analytic criteria for step edges in chapter 2, there were

only two places where the form of the input waveform actually affected the criteria.

By inserting a general feature in place of the step edge we can readily obtain a

general criterion. Recall that the definition of the signal to noise ratio E was the

quotient of the responses of the operator to the input waveform and to noise only.

The response to noise for an operator with impulse response f(x) will be given by

equation (2.4), and is

[o1+00! f2(x) dx]

The response of this operator at the "centre" of an arbitrary waveform F(x) is

similar to equation (2.3) and is just

00i F(-x)f (x) dx

So the signal to noise ratio for f and any feature F is (assuming no 1)

£ f1 F(-x)f(x) dx (4.1)
f ±f- 12(x) dx

The method for determining the localization of the operator is also similar to

that used in chapter 2, and we will not describe it fully here. Recall that localization

was defined as the reciprocal of the standard deviation in the position of the marked

edge relative to the true edge. To find maxima in the operator response we actually

locate zero-crossings in the derivative of its response. Localization was defined as

the quotient of the slope of the zero-crossing and the root mean squared noise in

the differentiated response. The latter is given by equation (2.7) and has the value

no f ..... i(z) dx]-
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The slope of the differentiated operator reponse is

d' J_ F(xo - x)f (x) dx f = (x.~)d
d0xo XOo 0 0

And so the localization A becomes (assuming no -- 1)

A = F(-x)f"(x) dx (4.2)
+00~t f12(X) dX

The final form of the composite criterion can now be written as the product of (4.1)

and (4.2) thus

f+ F(-x)f(x) dx f o F(-x)f"(x) dx (43)Vr+ Vdf O/s -f,2,()d
f/+~ f2(x) dx f '(x) d.T

Thus finding an arbitrary feature detector requires the maximization of this

functional, subject possibly to some subsidiary constraints such as the multiple

response constraint (2.25). This is difficult in general, even if the feature F is

particularly simple, like a step edge. However the form of the functional (4.3) is

simple enough that given a candidate feature detector we can readily evaluate its

performance analytically. If the operator impulse response f and the feature F

are both represented as sampled sequences, evaluation of (4.3) requires only the

calculation of four inner products between sequences.

This suggests that numerical optimization can be done directly on the sampled

operator impulse response. This method can be expected to be much faster than

the stochastic optimization since the evaluation of performance is exact, and the

gradient at each point in function space can be accurately estimated. At the same

time it is very general in that optimization for any waveform only requires a sampled

version of the waveform.

The output will not be an analytic form for the operator, but an implementation

of a detector for the feature of interest will require discrete point-spread functions

anyway. It is also possible to add additional subsidiary constraints by using a pcnalty

62



method (see Luenberger 1973). In this method the constrained optimization is

reduced to one (or possibly several) unconstrained optimizat ion. For each constraint

we define a penalty function which has a non-zero value when one of the constraints

is violated. We then find the maximum of

E(f)A(f) - p,P(f)

Where P is a function which has a positive value only when a constraint is

violated. The larger the value of pi the greater the likelihood that the constraints

will be satisfied, but at the same time there is a better chance that the method will

become ill-conditioned. A sequence of values of pi may need to be used, with the

final value from each optimization used as tl.e starting value for the next. The pi

are increased at each iteration so that the value of P(f) will be reduced, until the

constraints are "almost" satisfied.

An example of the method applied to the problem of detecting "ridge" profiles

is shown in figure (4.1). The function F for a ridge is defined to be a flat plateau

of width w, with step transitions to zero at the ends. The auxiliary constraints are

(i) The multiple response constraint. This constraint is taken directly from equation

(2.25), since it does not depend on the form of the feature.

(ii) The operator should have zero DC component. That is it should have zero

output to constant input.

Since the optimal operatbr for r~dges is also symmetric, it will have zero

response to a constant gradient. This means that it can be represented as the second

derivative of a function of finite extent, which in turn suggests that there may be

economical ways of computing operators for several orientations in two dimensions.

The figure shows two different operators derived for the same feature. The two

operators differ in the size of their possible support. The second is constrained to

lie within a region twice the width of the ridge, while the second has a support

three times the ridge width. The performance of the second operator is very slightly

worse than the first. However the fact that it requires a smaller support means that
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Figure 4.1. A ridge profile and the optimal operator for it

it is likely to be less susceptible to interference from adjacent featu:es. This aspect

of performance depends strongly on the width of the support, but performance in

other respects does not. We therefore choose the operator support to be three times

the ridge width, since at this width there will be no interference if the distance

between ridges equals the ridge width, i.e. if the ridges and valleys have the same

width.

Since the width of the operator is determined directly by the w0id'of the

ridge, there is a suggestion that several widths of operators should be used. This has

not been done in the present implementation however. With this ridge model a wide

ridge can be considered to be two closely spaced edges, and the implementation

already includes detectors for these The only reason for using a ridge detector is

that there are ridges in images that are too small to be dealt with effectively by the
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Figure 4.2. A roof profile and an optimal operator for roofs

narrowest edge operator. These occur frequently because there are many features

(e.g. scratches and cracks or printed matter) which result in discrete contours only

a few pixels wide.

A similar procedure was used to find an optimal operator for roof edges. These

features typically occur at the concave junctions of two planar faces of an object.

The results are shown in figure (4.2). Again there are two subsidiary constraints,

one for multiple responses and one for zero response to constant input. Note that

the difference between the two operators is essentially their "resemblance" to their

respective inputs. We would expect this from the theory of Wiener filtering. The

optimal Wiener filter for a signal in white Gaussian noise is just the time-reversed

signal. Wiener filtering considers only signal to noise ratio however, and the

localization and multiple response criteria impose effective smoothness constraints
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on the operator.

A roof edge detector has not been incorporated into the current edge detector

because it was found that ideal roof edges were relatively rare. In any case the ridge

detector is an approximation to the ideal roof detector, and is adequate to cope

with them. The situation may be different in the case of an edge detector designed

explicitly to deal with images of polyhedra, like the Binford-1lorn line-finder (1971).

Here several width of roof operator may be desirable to deal with different signal

to noise ratios in the image.

The method described above has been used to find optimal operators for both

ridge and roof profiles and in addition it successfully finds the optimal step edge

operator derived in chapter 2. It should be possible to use it to find operators for

arbitrary features, and for optimal step operators to deal with non-white noise. For

example, the problem of detecting step edges in "blue" noise (uncorrelated noise

that has been passed through a perfect differentiator) reduces to the problem of

detecting roof edges in white noise. So the optimal detector for step edges in this

case is the derivative of an optimal roof operator. Note that it is not the same roof

operator which we derived here because the latter includes the zero DC response

constraint, which does not translate to something useful for the step operator.

4.2. In Two Dimensions

We now face the problem of extending the one-dimensional ridge operator

to two dimensions. As in the case with step edges, the extension is an operator

composed of a detection function normal to the ridge direction and a projection

function parallel to it. As before we non-maximum suppress the output of the

convolution of the image with this mask normal to the edge direction. The maximal

points can then be thresholded (with hysteresis) and the marked ridge contours can

be combined with the edge map.

In the case of ridges however it is much harder to obtain an accurate estimate

of the ridge direction. There is no simple measure like the gradient direction which

aligns with the normal. While it is true that the larger principal curvature will be

normal to the ridge direction, this is a much less reliable quantity to measure from
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even a smoothed image. Remember that the ridge detector will be operating below

the resolution of the smallest step edge operator, so the degree of smoothing will

be slight. This suggests that it will be necessary to use several oriented masks at

each point and to choose the one which best fits the ridge locally. This has been

found to be an inadequate solution because it performs so poorly when the ridge is

highly curved, as is generally the case for printed text. While the highly directional

masks have advantages for long straight ridges, they are not adequate as general

ridge detectors.

In practice a measure similar to the curvature must be used. The direction of

principal curvature cannot be used directly, and not merely because it is a noisy

measure. The peak of a ridge should be approximately flat in the ridge direction

but highly curved normal to this direction. But there are points on the sides of

the ridge that are approximately planar. Here the direction of greatest curvature

will be arbitrary. It is quite possible that it will happen to be parallel to the ridge

direction and that there may be a slight maximum in this direction, and hence a

ridge point will be marked.

To prevent these erroneous points from being marked it is necessary to modify

the ridge direction estimate so that it takes into account the slope of the ridge

normal to the direction of greatest curvature. This slope will be approximately zero

if the point is at the top of the ridge, but for points on the side of the ridge where

the greatest curvature may lie parallel to the ridge direction, the slope normal to

this direction (which is the slope of the ridge face at that point) is large. So instead

of non-maximum suppressing in the direction of maximum curvature, we use the

direction n which maximizes

where n - is the normal to n, and a is some positive constant.

So in regions of low c'-irvature, the above measure chooses a direction in which

the slope is large, which is the correct behaviour for points on the sides of a ridge.

This method has been used and seems to behave quite well even on difficult ridge
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data e.g. finely printed text, An example of its performance on some text images

is given in chapter 6.

A second problem with using non-maximum suppression with the ridge operator

is that its response to an ideal ridge has two side lobes of opposite sign to its main

peak. These will lead to negative ridges or valleys being marked on either side of a

true ridge, and vice-versa. In fact there will also be maxima in the ridge detector

output on either side of a step edge, and clearly these points should not be marked

as ridges. We are starting to run into the problem of integrating descriptions of

different features, which is much more difficult than the integration of data about

the same kind of feature from different operators. Typical features in an image will

lead to responses from several different kind of feature detector, and some decision

must be made as to which feature best represents the image.

The question of feature integration was addressed in some detail by Marr

(1976) who stressed the importance of producing a single coherent representation

of intensity changes called the "Primal Sketch". This incorporated descriptions of

several kinds of feature including edges and wide and thin bars. the development

of effective algorithms for the combination of arbitrary features was not carried

very far by Marr, who rather applied a selection criterion to the feature detector

outputs at each point. In practice the responses of two feature detectors may not

be exactly coincident in space, and it is not clear how the selection criterion is

to be modified. In cases like these surface fitting is a useful technique as in the

"topographic primal sketch" of Haralick (1983). Here each possible interpretation

has associated with it an error measure that mirrors the difference between the true

image and the modelled surface. The best feature to describe each image point is

the one with lowest error.

The problem of integrating the ridge description with the edge detector output

has not been satisfactorily solved to the present time. A generalization of the

fcature synthesis approach described in section 3.1 has been implemented and gives

acceptable results on some images, but is not robust enough to be used generally.

In the case of comibination of operator outputs, preference was always given to the

smaller operators, and the feature synthesis always proceeded in one direction. For
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merging feature descriptions, where there is no a priori reason to prefer one feature

to another, it should be symmetric.

For example, suppose a ridge detector and a step edge detector both respond

to a feature that is roughly a step edge. From the edge points maiked by the

edge detector, we synthesize the ridge detector output that would have occurred

had the image actually contained a step edge. Then the ridge detector output is

compared with the synthetic output and if it is not significantly greater, no ridge

point will be marked. Similarly from the ridge detector output, we reconstruct the

edge detector output that would have occurred if the ridge detector accurately

described the image. The edge detector output will (in this example) be much

stronger than the synthesized output and so an edge point will be marked. This

method has the advantage that it is possible to mark the occurrence of more than

one type of feature at a point in an image. It has been found that such points do

occur in images (Ilerskovits and Binford 1970) in particular roof edges are often

superimposed on step changes and "edge effects" which are similar to ridges also

often accompany step changes.

It is necessary to consider ridges and valleys as different features as the detector

may output both kinds of interpretation near a single feature in the image. Some

form of integration technique such as feature synthesis or goodness of fit testing

must be used. This has not been done in the present implementation, which only

integrates one of these features with the step edge map. This is one area where a

lot of work still remains to be done, and several feature integration techniques need

to be tried.
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5. Implemetation Details

The ultimate test of any edge detector is its performance in some application

on real images. The translation of a derived operator into a program is non-trivial.

While the running version of the program is actually very small, it is still the result

of much refinement. The refinements are as much a part of the design of the edge

detector as is the theoretical analysis presented in the first four chapters. It is

not the intent of this chapter to describe any such program. It will describe in an

abstract way several algorithms for implementing some of the processing required

by the edge detector. The author feels that this is necessary for several reasons

(i) Since the edge detector involves a considerable amount of computation, especially

convolution, it is important that efficient algorithms be used if it is to run in

a reasonable amount of time.I
(ii) Because images may contain very fine detail it is important that local operations

involve the minimum number of pixels, but provide the best accuracy from

them. This applies in particular to operations such as the calculation of

directional derivatives and non-maximum suppression.

(iii) Edge detectors are not vision programs. The implementor should bear in mind

that the detector is only the first stage in a much larger system, and should

give consideration to the choice of representation of its output.

This chapter will not describe in detail all the aspects of the present edge

detection scheme, in fact some of the algorithms presented do not even form part

of the scheme, but may be used in future implementions. Instead it will focus

on two or three of the more critical aspects of the implementation, in particular

on efficient methods for convolution with Gaussians, and on the details of the

non-maximum suppression scheme. It will close with details of a control abstraction

for the programming of local parallel operations which are used extensively by the

scheme.
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5.1. Efferts of Discretization

All of the analysis to date has assumed that the image was a continuous

differentiable surface and that the edge operators were likewise continuous functions.

Since most implementations of the detector on digital computers will employ

discrete filters applied to sampled image data, it is necessary to find accurate

discrete approximations to the continuous filters. It is also important to consider

the effect, of the smoothing filter (if any) which was applied to the image before it

was sampled. Smoothing filters are necessary to prevent aliasing of high frequency

components in the sampled signal. Suppose an image is smoothed, sampled and

convolved with a discrete filter. By the associativity of convolution, this is equivalent

to convolving the image with a filter that is the result of the convolution of the

smoothing filter and the discrete filter. If the image can be smoothed with a

Gaussian smoothing function, no convolution is necessary at that scale.

The simplest way to approximate a continuous filter with a discrete filter is to

sample the former. If this method is to succeed, we must ensure that the sampling

does not introduce aliasing. Consider a continuous first derivative of Gaussian filter

of the form

f(x) = -- exp( Z)

Suppose that the image is sampled at intervals of r, (the filter must also be

sampled at this rate for discrete convolution) then the Nyquist frequency is 1. The

effective bandwidth of the filter should be less than half this frequency to prevent

aliasing. The Fourier transform of this filter is

F(w) = vriiwexp( - W2 2

The cutoff frequency is I, and substituting we find that the amplitude at cutoff is

,2- i - exp( r2
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'rhis function never reaches zero amplitude for large w, but it does approach

zero very rapidly. We can set the effective cutoff frequency at the point where this

function falls to 0.01 of its maximum value. This limits the smallest value of a that

we can use for a given sampling rate. The minimum value of a is approximately r.

This is in fact the smallest operator size used in the present implementation.

A second problem arises when we try to approximate infinite Gaussians with

finite impulse response filters. Once again we can exploit the fact that the Guassian

decays to zero very rapidly in the spatial domain. In the current implementation,

the Gaussian is truncated at about 0.001 of its peak value. This constrains the

ratio of the number of samples in the (discrete) impulse response to the width a of

the filter. This ratio is typically 8, e.g. to approximate a filter with a a of 2.0 it is

necessary to use at least 16 samples.

Finally, it should be mentioned that it is sometimes possible to dispense with

the convolution step entirely. If the desired value of a is much less than r, discrete

convolution is not practical. However, an equivalent convolution may be performed

with a continuous filter (the smoothing filter) before the image is sampled. Since

in theory the smoothing step is necessary anyway, no extra computational effort is

required. We find in fact that the smoothing function is determining the performance

of the subsequent edge detector, and the use of Gaussian smoothing should give

near optimal step edge detection.

5.2. Gaussian Convolutions

It is perhaps surprising to see an entire section devoted to what seems

a very straightforward and specific computation. However, there are several

interesting properties of the two-dimensional Gaussian that suggest fast algorithms

for convolution. In particular, the central limit theorem implies that repeated

convolution with any finite filter tends in the limit to a Gaussian convolution. We

begin with a review of discrete convolution.

5.2.1. Discrete Two-Dimensional Convolution

The output of the convolution of a discrete image I(n, m) with a two-dimensional

filter f(i, j) is given by the double summation
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L M

O(n,m)= I(n-i,m-j)(i,j)

assuming that the filter f has the same size M in both dimensions. This method

requires M 2 multiplications and slightly fewer additions for each output point

computed. It is a general r ethod and will work with any two-dimensional finite

impulse response filter.

5.2.2. Convolution using One-Dimensional Decomposition

We now consider a more specialized form of convolution which is applicable to

a limited subclass of two-dimensional filters. The subclass is the class of separable

two-dimensional filters. This class is characterized by the decomposition of their

impulse responses into independent linear filters

I
f (i, j) --- fMi, 0) * My0, j)

where the * denotes convolution, and the filters f and fV have only M non-zero

components. By using the associativity of convolution, we break the convolution of

an image with the two-dimensional filter into two convolutions with linear filters

I * f = I * [f" * fy,] =[I *f.]*fV

This method requires only 2M multiplications and about the same number of

additions per point. For large operator sizes (values of M of 64 are common) this

method is substantially faster than the naive method, but is limited to separable

filters. The number of useful members of this class is actually quite small, and

the Gaussian is in fact the only two-dimensional symmetric function which can

be decomposed in this way. Other useful separable functions include the first

directional derivatives of the Gaussian in the z and y directions.

5.2.3. Recursive Filterring

So far we have been approximating the infinite Gaussian function with finite

impulse response filters. It seems that the approximation could be more accurate
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if we were to use infinite impulse response (recursive) filters instead. We can again

make use of the separability of the two-dimensional Gaussian, and can therefore

reduce the filter design problem to that of designing a one-dimensional filter

which approximates a Gaussian. The infinite impulse response (IIR) filter can be

characterized by the equation

z P
y(n) =1 aix(n - i) + 1 bjy(n - j) (5.2)

i=O 1

where x(n) and y(n) are the input and output respectively at the n th point. This

filter is roughly equivalent to a continuous filter having P poles and Z zeros. The

positions of the poles are determined by the coefficients b, while the zeros are

determined by the ai.

The immediate drawback of using such a filter to approximate a Gaussian is

that the filter is infinite "in one direction only", and that the Gaussian has an

impulse response that extends to infinity in both directions. The solutioi to this

problem is illustrated in figure (5.1). We employ two recursive filters moving in

opposite directions, each of which has an impulse response which is approximately

a half-Gaussian. We then sum the two responses (and subtract a component at

the centre point which is doubled) and are left with a first approximation to the

symmetric Gaussian. We can if we wish repeat this process on the filtered image

and (by the central limit theorem) we will obtain a very close approximation to the

Gaussian, as shown in the last frame of figure (5.1).

The half-Gaussian is approximated by a damped exponential cosine, which

requires two poles and two zeros in the recursive filter. The b coefficients are derived

by considering four discrete output values near a zero-crossing of the response. We

choose the values to be

exp(ar) sin(-wr) 0 exp(-ar) sin(wr) exp(-2ar) sin(2wr)

Application of equation (5.2) to the first three and last three values gives two

equations each of which involves only one of the bi,and the solution is
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bl = 2 exp(ar) cos(wr) b2 - exp(2ar)

where a and w are the decay constant and angular frequency respectively, of the

damped exponential cosine response. Typical values for a and w are

1
w = 0.8a (5.3)

where a is the standard deviation of the equivalent Gaussian. The ai determine

the gain of the filter and its first derivative at the origin. For unit gain and best

approximation to the slope of a Gaussian we use

a0 = 1.0 al = exp(-2) -- bi (5.4)

The interesting feature of this method is that its complexity is independent

of o. In fact for a single pass approximation, it requires only 12 multiplications

and additions per point (3 each for filtering in four directions). It also requires an

extremely small number of array references, and the number may be reduced even

further by saving previous x and y values in registers (only three are needed). It is

possible to implement the algorithm using only 4 references per point. In practice,

it is usually better to make two passes over the image, so the above figures should

be doubled.

This particular method is of course even more specialized than the previous

methods, and is only useful for Gaussians and certain other infinite functions.

However it has the lowest complexity of any algorithm discussed, and is very

economical with regard to memory references. It has the additional advantage that

the filter size can be varied by simply changing the value of some parameters,

without affecting execution of the algorithm. It would seem to be the first choice

for any future implementations.
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5.2.4. Binomial Approximation

In the last two sub-sections we saw that by using the special properties of

Gaussians we were able to reduce the number of multiplications required to perform

convolution. The resulting algorithms were no longer general convolutions but were

restricted to subclasses of two-dimensional filters. It is possible by exploiting the

full power of the central limit theorem to produce an algorithm that requires no

multiplication at all. Recall that repeated convolution with any spatially limited

filter tends to an equivalent Gaussian convolution. If we choose the filter to be

addition of two adjacent points, and if we repeat the addition many times, we can

obtain a Gaussian approximation without multiplication.

A useful analogy to this method exploits the equivalence of discrete convolution

and polynomial multiplication. The filter produced by the addition of two consecutive

samples is isomorphic to multiplication by the polynomial (x + 1). If the filter is

applied n times it is equivalent to multiplication by the polynomial (x + 1)". The

coefficients of this polynomial are given by the binomial theorem. We then use

the fact that for large n, the binomial distribution may be approximated by a

Gaussian. This method is economical in terms of multiplication, but its complexity

is relatively high. Since the variance of two distributions add when the distributions

are convolved, the standard deviation a only increases as the square root of the

number of convolutions. The value of a after n applications of the addition filter is

1

3

To phrase this result in the terms used in the rest of this section, we find the

number of samples M required for an equivalent discrete convolution. Since M is

typically 8a, the relationship between the number of additions per point n and the

equivalent mask size is

n 9M2

64

The overall complexity of this algorithm for two-dimensional convolution

(assuming it is used with decomposition) is A M 2 additions per point, with the
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number of memory references being roughly the same. This may sound like a very

small number, but the exponent is high. The smalles" value of M that is ever likely

to be used is 8, and so the minimum number of additions using this method is

18. However, both the number of additions and the number of memory references

grows with M 2 even though we are exploiting separability. Since the time required

for floating point addition is often not much lower than the time for a multiply,

this method rapidly becomes unattractive as M increases.

5.2.5. Fast Convolution

In recent years, very fast algorithms have been developed for integer or

polynomial multiplication (Schonhage and Strassen 1971). Asymptotically these

algorithms are O(n) in the length of the integers being multiplied. In the case

of convolution, we typically use a filter that is much shorter than the length of

the input, and we should therefore expect the asymptotic time for convolution

to be independent of the filter length. Attempting to achieve anywhere near the

asymptotic complexity however, would introduce prohibitively high constants.

But all is not lost. By using the simplest form of fast multiply, we can gain

a very useful speedup with relatively low overhead. Consider two sequences of

numbers which are to be convolved. We assume w.l.o.g. that the length of the

sequences is 2n, and we break each sequence into two subsequences of length n.

Let the two sequences be x and y, and denote the subsequences as xl, z 2 and yj

and Y2. Then

z = xl 1. +X2 and Y = Yl,. +Y2

where In denotes left-shifting of the sequence by n. We then use the distributivity

of convolution over addition, and we have

X*Y = (XI%+X 2 ) *(YI.+Y 2 ) == X*Y12 X1 *Y 2 +X 2 *YI)In+X 2 *Y 2
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Froin which it would seem that comnputation of a 2n length convolution requires

4 convolutions of length n, implying an order of growth of n2 . But the above

expression can also be written as

X * Y z= X1 I2. +[(Xl - X 2) * (y 2 - y1 ) + X *yl + X2 *y2)) In +x2 *y2

Which requires only 3 convolutions of length n, plus some extra addition

and subtraction. We can recursively apply this technique to compute these shorter

convolutions, and we arrive at an algorithm with lower order of growth than n2.

This leads to recurrence relationships for the number of multiplies and additions

to perform a convolution of length n

Cm i] = 3C. {n

C0Jfl) = 3C 4n]+4n-4

where C, is the number of multiplications and Ca the number of additions for

an n-point convolution. When these recurrences are expanded and simplified we

obtain for the multip!ication and addition complexity

Cm[n] = 3 L , 3 1-g2 (n) = nM.12 ,n 1.6

C.[n] = 6 .3 L -- 8.2L + 2 ; 6n 1. 6  for large n (5.5)

where L is the smallest integer greater than or equal to 1og 2(n). To translate

these results into the context of convolution of a long sequence (say length n1 )

with a much shorter one (length n2), we assume n = n2. We will require ,

such convolutions, and each one will require about n2 6 multiplies. The resultant

complexity is !n 1. = 0162 , so we find that the complexity is linear in the
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length of the longer sequence but only varies as the square root (roughly) of the

shorter sequence. For two-dimensional convolution, similar results hold, and the

multiplication complexity is M1 2 multiplies per point while the addition complexity

is about six times this.

Thus we have the remarkable result that this method has almost the

same complexity as convolution with one-dimensional decomposition, but uses

a completely general two-dimensional mask. The algorithm has been implemented

and early tests indicate that it starts to exhibit its reduced complexity over naive

convolution at about n = 16. At n = 1024, the speedup is five to six fold. It can

be implemented in 6n space, and the number of memory references is about the

same as the number of additions.

The low value of the complexity constants make this method faster than

convolution employing fast Fourier transforms for values of n less than about 16000

(caution: this number is very hardware-dependent). It is also somewhat easier to

encode than the FFT, since. it has a natural recursive definition. It is quite likely

that it is the fastest way to do general convolution for n in the range 16 to 16000.

The method makes it possible to use two-dimensional masks that have exactly the

form of the optimal edge detection operator, rather than Gaussian approximations.

While the fast convolution algorithm has not yet been incorporated into the edge

detector, it is certainly worthy of further experiment.

5.2.6. Sub-Summary

Hopefully this section has highlighted the fact that there are frequently manifold

interesting implementations of seemingly mundane operations, e.g. convolution. But

it has another purpose. When trying to solve a vision problem the first consideration

should be motivational, i.e. what should this algorithm compute. The second is

feasibility, e.g. what can be computed from an image. Only after these two have

been treated should there be any constraints imposed by tractability, i.e. what

can be ccnputed in reasonable time. The choice of algorithm should not be

prejudiced by considerations of efficiency until much consideration has been given

to implementation, and only if it seems likely that no efficient algorithms exist

for the computation. This theme is characteristic of the work of Marr (1976) who
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argued strongly for a breakdown of image processing problems using the above

considerations.

5.3. Non-Maximum Suppression

The optimal edge operator was derived under the assumption that edges

would be marked at maxima in its output. For two-dimensional images, finding

these directional maxima is straightforward but there has been quite a bit of

experimentation with various non-maximum suppression schemes. The operation

should be as local as possible i.e. it should rely on pixels that are close to the

i, -tr ..ial edge point, but it should also be robust and accurate.

The non-maximum suppression scheme described here may be used in either

of two ways. In the first instance the edge direction is estimated from the gradient

of a Gaussian-smoothed image surface by simply differentiating in the x and

y directions. The gradient magnitude is then non-maximum suppressed in the
gradient direction. This is just a possible implementation of equation (3.1). In the

second case, the algorithm is used for non-maximum suppression of the outputs

of directional masks. Here the gradient direction is fixed and is a property of the

operator. We again non-maximum suppress the gradient magnitude, which in this

case is the magnitude of the response of that operator.

In either case the algorithm is the same. It uses a nine-pixel neighbourhood as

shown in figure (5.2). The normal to the edge direction (either the gradient or the

prefered operator direction) is shown as an arrow, and it has components (ut, up).

We wish to non-maximum suppress the gradient magnitude in this direction, but

we have only discrete values of the gradient at points P,. We require three points

for non-maximum suppression, one of which will be Pz, and the other two should

be estimates of the gradient magnitude at points displaced from Px,, by the vector

U.

Now for any u we consider the two points in the 8-pixel neighbourhood of P,,y

which lie closest to the line through P,y in direction u. The gradient magnitude

at these two points together with the gradient at the point P,,, define a plane

which cuts the gradient magnitude surface at these points. We use this plane to

81



PX-1, Y " PX, y.l P .+, Y+1

o o-- - 0
1 U X

UjY

0 0!PX-" Y  P" P

0 0 0
Px- 1, ,- I P, - P , - -

Edge Direction

Figure 5.2. Support of the non-maximum suppression operator

locally approximate the surface, Lnd to estimate the value at a point on the line.

For example, in figure (5.2) we estimate the value of a point in between Prv+l and

P+,y+l that lies on the line. The value of the interpolated gradient is

UU IpU 1
G, = ' G(x + 1,y + 1) + G(z, y + 1)up u

Similarly the interpolated gradient at a point on the opposite side of P, is
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UY - Uz

G2 : G(x- 1, y- 1) -+ - - G(z,y- 1)
UY UY

We mark the point P,, as a maximum if G(z,y) > G1 and G(x,y) > G2.

The interpolation is similar for other gradient directions, and it will always involve

one diagonal and one non-diagonal point. In practice, we can avoid the divisions

by multiplying through by uy.

This scheme involves five multiplications per point, but this is not excessive,

and it performs much better than a simpler scheme which compares the point P1,

with two of its neighbours. It also performs better than a scheme which used an

averaged value for the gradient along the edge, rather than just the value at Px,y.

5.4. Mapping Functions

We close this chapter with a brief discussion of a general approach to program
structure for image processing algorithms. The development of a low-level vision

program requires many repetitive operations on each point of the image. There

will be some set of dependencies between the results of these computations, which

implies that there is a natural (partial) ordering of computations, and that some

intermediate results must be computed and saved somewhere. Aside from any

hardware (or object code) considerations, there are two basic ways of implementing

a software interface for this kind of processing.

The first and most obvious way is to provide a set of primitive array operations,

such as addition or convolution, which take arrays as arguments and store results

into arrays. Programs written using these primitives look like normal sequential

assembly code, unless there is some complex function (built from the primitives)

which must move over the array in a non-standard way. In this case the arguments

describing the way the function is to be moved must be repeated in each call to a

primitive. This leads to cumbersome and non-orthogonal code.

The second approach is to provide a mapping function which takes a local

image processing function as an argument and moves it over some number of arrays,

with the motion specified by other arguments. The two operations of mapping

and local computation are now handled by separate functions. This method is

83



reminiscent of the MAP- functions in Lisp, (Moon, Stallman and Weinreb 1983)

and is similar in philosophy to the concept of iterators in C1LU (Liskov et al. 1979).

It has a number of advantages at the user level. The first is that the local function

can be N ritten in the source language e.g. Lisp (even if the mapping function

turns it into something quite different) and tested on a sample set of arguments,

without having to generate test images. The source code is more compact and

less error-prone, and subjectively more readable. If parallel processing hardware is

available, the source code would compile into something like the code using the

first method. There would be no significant differences in the execution efficiencies

of the two methods.

For a serial machine though, there are concrete advantages in directly

implementing something like the second method. Since the local function is

evaluated completely at one point before moving to the next, there is only one

storage location required for each intermediate result. This contrasts with the

former method which needs a block of storage for each intermediate result. The

intermediate values may be held in high-speed storage (registers or cache) which

greatly reduces the number of memory accesses required to apply the function to

a full image. There is also a very considerable speedup possible when the local

function uses conditional branching, such that the time to process an image point

depends strongly on the data values at that point. For (most) parallel machines

the time to apply the function to n points will be the worst case time for a

one-point application. Conditional branching must be accomplished by setting a

non-execution flag for the length of the code to be skipped. No advantage can be

taken of sparsL data, or computional shortcuts such as recursive filtering.

It is the author's experience that the latter style makes code development much

easier (this was a serious consideration in the implementation of the algorithm,

much of which is written in Lisp machine microcode). This is true to the extent

that some of the more complicated functions, such as the sparse directional masks,

could probably not have been implemented using the first approach because of the

sheer amount of code. The edge detector has been implemented partially using the

first approach, and fully using a mapping function (which is itself microcoded). The
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mapping function maps over any number of arrays, with arbitrary increments for

each array, and can store results into several output arrays if the function being

mapped returns multiple values. The difference in execution times between the two

methods is small, but the second method uses much less array storage, and has a

much shorter source.

I8
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6. Experimers

It has been stressed that edge detection is only the first stage in a vision system

and that the performance of the detector can only be gauged in its context. It has

also been argued that the requirements of many of the later modules are similar

to the extent that it should be possible to design a detector that will work well in

several contexts. Starting from this assumption we proceeded to design a detector

based on a precise set of performance criteria which seemed to be common to these

later modules. We saw in chapters 2 and 4 that it was difficult to capture exactly the
"intuitive" criteria that we originally defined. It is virtually impossible to capture

all of the desirable properties of edge detection in a finite set of criteria and in

the final analysis the only valid criterion is the performance of the detector on real

data. This chapter is concerned with evaluating performance at the experimental

level, and will include comparisons with some other edge detection algorithms. The

evaluation is in three stages:

(i) Validation of the analytic performance criteria. The operator has been designed

to optimally detect step edges in Gaussian noise. It should perform well on

synthetic images of steps.

(ii) Subjective evaluation of performance on real images. The ir-ention here is

to verify the operation of various parts of the algorithm, in particular the

integration of different operator widths and orientations. It is not possible

to validate these by inspection of the detector output, but defects in their

operation can often be isolated in this way. That is, we cannot tell by looking

at the output whether the detector is working perfectly, but we can often tell

where it is failing.

(iii) Evaluation of detector performance in some context. Since an edge detector

is the first stage in many vision programs, it is appropriate to compare edge

detectors by comparing Lhe performance of the program which uses the two

detectors. If the original assumption that many vision modules have similar

iequirements is valid, a detector designed using these criteria should perform

well with all modules.
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Finally we will present some simple demonstrations of properties of the human

visual system which are consistent with the edge detector presented here. While

this does not prove that the human visual system performs the same computations,

it does suggest that the two systems share a common set of goals. It reinforces the

choice of performance criteria and gives evidence that an edge detector designed

using these criteria can perform well on a great variety of images.

6.1. Step Edges in Noise

In chapter 7 we will demonstrate that a directional second derivative edge

operator gives better localization than the Laplacian when applied to a Gaussian

smoothed image. We have also claimed (chapter 2) that a difference of boxes operator

gives unacceptable multiple response performance to a noisy step edge. We should

test those results experimentally now. In figure (6.1) We have a two-dimensional step

edge with additive white Gaussian noise. The successive frames show the responses

of difference of boxes, Laplacian of Gaussian and directional first derivative of

Gaussian operators. The signal to noise ratio of the image, defined as the ratio of

the amplitude of the step to the standard deviation of the noise at each pixel, is

about 0.2, and the image is 256 by 256. The Gaussians for the Laplacian and first

derivative operators both have a a of 8.0 pixels, while the box masks have a length

of 32 pixels in x and y.

Processing of the output of the difference of boxes operator after the convolution

step is identical with the directional first derivative operator, that is, it is

non-maximum suppressed and thresholded with hysteresis. For the Laplacian of

Gaussian, the sequence is slightly different. Edges are initially marked at the

zero-crossings in the convolution output, then the gradients of the convolution

output are computed and the gradient magnitude is thresholded with hysteresis.

For each operator there are-two thresholds that are set empirically to give the

best subjective output. Figure (6.1) gives a guide to the localizing and multiple

response performance of each of the operators. As we would expect, the directional

first derivative operator gives subjectively better localization than the Laplacian,

and the difference of boxes produces several contours in response to the single edge.
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Figure 6.1. (a) Two dimecnsional step edge with adIditive white Gaussian noise,
and outputs of (b) Laplacian of Gaussian, (c) differenice of boxes and (d) first
derivative of Gaussian operators.
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Figure 6.2. Effect of changing operator thresholds. In the first row, the
thresholds are increased by 50% , and in the second row they are reduced by 50%.
The order of operator outputs is (from left to right), (i) Laplacian of Gaussian, (ii)
difference of boxes and (iii) first derivative of Gaussian.
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To gain some idca of tle detection performance (i.e. signal to noise ratio) of

the operators, we can see how their outputs vary as we change the thresholds from

the optimum values. The first row of figure (6.2) shows the result of increasing

all thresholds by 50%, and in the second row the thresholds are reduced from

from the optimum levels by 50%. From these we can infer that the difference of

boxes operator has the best signal to noise ratio, since for all threshold levels, it

marks edges only in the vicinity of the step. Of course signal to noise ratio is only

one component of detection performance, and lack of multiple responses is the

other. In this respect the difference of boxes performs very poorly, and worse as

the thresholds are lowered. The Laplacian of Gaussian exhibits poJr signal to noise

ratio compared to the other two, and it is not possible to set the thresholds so that

the full length of the edge contour is marked without introducing contours due to

noise.

It may be argued that the problems with Laplacian of Gaussian or difference
of boxes operators can be circumvented by applying "pruning" heuristics to their

outputs. For example, it may be argued that it is possible t.o eliminate erroneous

maxima in the difference of boxes output that are "near" the edge, or to use the

outputs of different Laplacian of Gaussian channels to reinforce the evidence of

an edge. This argument misses the point. The optimal operator derived here, or

the first derivative of Gaussian approximation to it, gives the best performance for

a single linear operator when followed by non-maximum suppraion. In order to

improve the performance of the other operators, non-local predicates have to be

applied which in a sense make the filtering step redundant.

6.2. Operator Integration

We have argued that in order to handle a variety of images, an edge detector

should incorporate operators of different widths. We have also argued for highly

directional masks when they are applicable. All of these operators respond to the

same type of feature, a step edge, and where several of them respond to the same

edge, the detector must mark a single edge only. The problems with the integration

of different operator outputs are very great. In fact, many of the arguments against

directional operators have been pragmatic, that, it is difficult to combine oriented

90



operators and produce i coherent output. 'he probhlcis witll coi'ilini Hg o)erator

outputs of different widths are even worse, because maxima in the out puts of two

operators responding to a single edge may be displaced from each other. Chapter

3 described feature synthesis as a niethod for combining several feature detector

outputs. This method is used in the implementation of the edge detector, and we

now explore how well it performs on some test images.

6.2.1. Integration of Differcnt Mask Widths

The reader can readily gain an appreciation of the variety of detail that occurs

at different scales in an image by reference to figure (6.4). This figure shows the

edges marked by two operators on an image of a perforated cleaning cloth. The

mask widths are a = 1.0 and a = 5.0 respectively. The edges at the two scales are

virtually independent. In contrast, figure (6.7) shows the edges marked by operators

with a = 1.0 and o = 2.0 on an image of some mechanical parts. In this image,
almost all of the detail is picked up by the smaller operator, and it only fails on

some of the shadow boundaries. These two figures capture the essence of the feature

integration problem. Ideally every feature in the image should be marked, but only

once.

Our basic width selection criterion, that is using the smallest operator that has

sufficient signal to noise ratio, should do the right thing on the parts image. The

edges at the smaller scale will first be marked, then the larger operator output will

be synthesizedi froi theim, anid fin ally any ed ge, jTi the large o)erator output that

are not consistent with the synthesized output will be added. The result is shown

in tile figure (6.8a). The on ly difference between this and the figure (6.7a) is the

add itioi of some shadow edges, and tle extension of some shading edges. Similarly

the figure (6.5a) shows the combined output from the edges in figure (6.3). Since

the long shading lines in the image are not seen by the smaller operators, the large

operatot features that. correspond to them are not syWhesized. When they appear

in the actual large opvr,!,')r out put they are marked iin the detector outl)ut.

'The, re is some freedoim wit h the feat iire synlthesis apl)roach as to the "inhibition"

effect of the synuth( sized opperator outputs. R ecall lhat, the actual operator output

had to be silgnificanlltv ,reatcr t han the synthes ized output for an edge to be
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Figure 6.3. (a) Cleaning cloth image
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Figure 6.6. (a) P~arts image



IL

I ZN

,c,

,0

it Ct C

teo.. ,, .,ooS

~~. Al W P '

1 .C -"'j~. .

Figure 6.7a. Edges from parts image with operator width a = 1.0
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Figure 6.7b. Edges from parts image with operator width oa 2.0
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Figure 6.8b. Superposition of the edges for parts image



marked. In the present implenentation the vector difference between the actual

and synthesized gradient is first taken and if the magnitude of this difference is

greater than the magnitude of the synthesized gradient, a new edge is marked. By

introducing a scale factor into the comparison, the likelihood of a new edge being

marked can be varied. This factor must be determined empirically. The above two

images place conflicting requirements on the factor. If it is too large, the fuzzy

edges in the cloth texture are missed. If it is small, there is duplication of edge

points in the parts image, and consequent smearing of the edge contours. A single

value was found which gave the results shown in the two figures. This value has

given good results on all the images tried, and does not require "tuning" for a

particular image. For comparison, below each of the combined edge maps in figures

(6.5) and (6.8) is the superposition of the edges from which the maps were formed.

Two final notes. In order for feature synthesis to be effective on the cloth

texture image, the edges at the smaller scale should be produced by an operator

which is insensitive to slow gradients as described in section (3.5). Otherwise the

synthesized large operator output will contain a slowly varying component that will

prevent new edges from being marked, even though the small operator did not mark

the slow edges. This component is due to the slow gradient "leaking through" the

large number of closely spaced edges from the smaller operator. In general feature

synthesis is most effective when the two features are independent.

Also the combined output exhibits streaking of the long contours. This is

because a single scale factor is presently being used for comparison of real and

synthesized outputs. This factor may be viewed as a kind of threshold, and therefore

improved performance should be possible by using two values, i.e. by thresholding

with hysteresis. This has yet to be tried at the time of writing.

6.2.2. Integration of Directional Masks

Recall from section (3.2) that highly elongated directional operators are

preferred whenever they have sufficient goodness of fit to the image. The goodness

of fit measure is simply the standard deviation of the gradient values at, several

points along the length of the directional mask. A directional operator can only

mark an edge if the sum of these values exceeds sorie fixed multiple of their
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standard deviation. This prevents a directional operator from responding to curved

edges or from extending edge contours beyond corners.

It also makes operator integration much easier. For one thing there will seldom

be more than two directional operators responding to an edge of a particular

orientation. Also the edges points produced by directional operators will not be

displaced significantly from the edges produced by less directional operators if both

have the same width. This is because the only way an edge point can be displaced

is if the edge is significantly curved, but this will immediately prevent a directional

operator from responding to it. Feature synthesis is not necessary for directional

operator integration, and a simple non-maximum scheme suffices.

The non-maximum suppression scheme was described in section (5.3). The

only peculiarity of non-maximum suppression for directional operators is that

the direction of non-maximum suppression is fixed a priori for each mask. It is

normal to the long axis of the mask. Once all edges have been marked by the

directional operators, the simple gradient magnitude is computed. A composite

gradient is formed as the maximum of the simple gradient and the magnitude of

the directional gradient. This composite gradient is then non-maximum suppressed

in the gradient direction. The effect of forming a composite gradient is to prevent

simple (non-directional) edges from being marked adjacent to directional ones. An

example of the performance of this scheme is given in figure (6.10). The first frame

of (6.10) shows the edges marked using simple gradient non-maximum suppression.

The second frame shows the addition of directional operators at the same scale.

Several additional elongated edges are visible in the second frame. There is no

evidence of straightening of curved edges or extension of edges beyond corners.

The edge detector has been used quite extensively by the author in practical

systems. The first of these is a contour tracker which locates an edge contour in

an image from a television camera, and plans a trajectory for a robot manipulator

which follows the contour. The second system forms polygonal approximations to

the bounding contours of objects in an oveilicad image of a robot's workspace. An

example of this system is given in figure (6.11). These are then used to plan paths

through the workspace which avoid the obstacles. It has also been used by others
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F'igure 6.9. Dalck irnartc, approximately 700 by 500 pixels
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Figure 6.10a. Edges from Dalek image at a - 2.0
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."igure G.'Ob. Dirtctiona, edges from Dalek image at c = 2.C, wilh ,ertors
in six directions
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in the context of shape description (Brady and Asada 1983). It has been used as

a front end for an implementation of the Marr Poggio stereo algorithm (Grimson

1981) but a quantitative comparison with Laplacian of Gaussian zero-crossings in

this application has not yet been done. We close this section with examples of the

edge detector output on (as promised) a variety of images. These appear in figures

(6.12) through (6.15). The images are all roughly 700 by 500 pixels and the time

to process each one was about 10 minutes on an MIT Lisp machine with no special

hardware.

I
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Figure 6.11. (a) Image of some paper shapes, (b) edges from operator width or
=1.0, (c) bounding polygonal approximation to the edges
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Figure 6.12b. Edges from Quasimodo image using operator width a = 1.0,
where edge strength is represented by increasing brightness.
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Figure 6.13a. Kent image
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Figure 6.13b. Edges from Kent image using operator width a -- 1.0
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Figure 6.1I1a. Westminster image

11



UU

jr..4~

AO

01 0

P5~i~

C:>( q' ' Cr

____________ J ~ o I,*
- o~(ji ~d
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Figure 6.15a. Marine image
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Figure 6.15b. Edges from operator width a = 1.0
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6.3. The Line Finder

An optimal operator for ridges was derived in chapter 4. It was pointed out

that the extension of this operator to two dimensions was more diflicult than the

edge detector because of the lack of a natural property (such as the gradient) which

could be used to determine the ridge orientation. The ridge detector must rely on

a much more noisy quantity (which is approximately the direction of maximum

curvature) to perform non-maximum suppression. Printed text is a difficult test

case for a ridge detector because of the variation in orientation and width, and the

presence of junctions. The ridge detector output on some printed text is given in

figure (6.16). It uses a second derivative of a Gaussian to approximate the optimal

operator derived in section (4.1). For reference, the edge detector output on the

same image is given in figure (6.17). The ridge detector output is subjectively more

legible, but in many places sections of contour are missing.I
In principle it should bc possible to incorporate the ridge detector output in

the step edge detector using feature synthesis (or some other feature integration

approach). This has not been done to the present time and remains a challenge to

low level vision schemes.
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6.A. Psychophysics

We have made a case for a particular set of criteria on effective edge detector

and we have claimed that these criteria are common to a variety of applications.

In theory any edge detector which is used in these applications should use similar

criteria, and an algorithm which is consistent with these criteria. The human visual

system provides structural information about the visual field to later processes, and

human beings are adept at stereoscopic depth perception. It is reasonable to argue

that it should perform edge detection at an early stage.

It is also reasonable (from the arguments given in chapter 3) to suggest that

it should use a variety of operator widths and orientations. It should therefore give

preference to small operators whenever they have sufficient signal to noise ratio.

To test this hypothesis we need somehow to produce an image which has different

detail at two scales, and then add noise to see if the percept changes. Such an

image is the coarsely sampled picture of Abraham Lincoln used by Harmon and

Julesz (1973). The effect. of the coarse sampling is to introduce irrelevant detail at

small scales. The detail makes the image difficult to perceive unless blurred.

The same effect should be observed if we add noise to the image, because

the signal to noise ratio of the small operators will become intolerable before the

larger ones. Therefore the smaller channels should be ignored at high noise levels,

while the larger channels will still contain coherent information. A coarsely sampled

image of a well-known stereo-type (not Lincoln) is shown in figure (6.18). The

successive frames have not been blurred but contain increasing amounts of additive

white Gaussian noise. The later frames are easier to perceive as a human face. We

therefore have the remarkable situation that adding incoherent noise to such an

image makes it more perceptible.

A second result of the analysis in chapter 3 is that highly directional operators

have better signal to no:se ratio than less directional operators. The highly directional

operators will :-.ot be as Scnsitive to rapid changes in the orientation of an edge

contour, and will tend to make a rapidly changing contour appear straigter. Figure
(6.19) contains an series of parallel lines which are locally curved but globally

straight along their length. The lines are closely spaced so that larger channel
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Pigure 6.18. Image of a human face with varying amounts of additive white
Gaussian noise.

widlths (which would also tend to give a subjective straightening of the contour)

will have poor signal to noise ratio. When noise is added to this image, there is an

apparent straightening of the lines.

Trhis would indicate a scheme which, in contrast with the present detector,

gives preference to less directional operators when they have sufficient signal

to noise ratio. Hlowever the apparent inconsistency can be resolved if we use a

mnor(' sophisticated applicability test for the directional operators. In the present

algorithrri, directional operators would niot be applicable in either of the framnes in
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lFigure 6.19. Image of approximately parallel lines with sinusoidal variation in
direction and additive Gaussian noise

figure (6.19) because of tile poor approximation of the contours to straight line

The simple standard deviation applicability measure is poor if the edge contour is

not straight or breaks at a corner. It is also poor if the image is noisy, but in this

case a directional operator is no less applicable. If image noise is taken into account

in the applicability metric, we would expect the addition of noise to enhance the

applicability of directional operators, consistent with (6.19).
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7. Related Work

Now that we have examined in some detail the design of an edge detector

usong variational techniques, we can contrast it with other schemes with respect

to both its design goals and the methods used to attain those goals. In order to

consider any appreciable fraction of the great variety of edge detection schemes that

have been proposed it is necessary to form a categorization of these schemes. Most

schemes in fact do not lie wholly within one of these categories, but retain aspects

of several. We will examine several detectors based on their apparent commitment

to the following goals

(i) A decision as to the presence of an edge and an estimate of its location from a

best-fitting surface that approximates the real image surface.

(ii) To optimally estimate some derivative, usually first or second, at each point in

the image and mark edges at local features in these derivative outputs, e.g.

zero-crossings in second derivative or maxima in first derivative.

(iii) Frequency domain techniques, which attempt to enhance edges by filtering.

Here the filters are designed using frequency domain techniques to optimally

discriminate step edges from the background, by assuming some frequency

distribution for the background.

All comparisons will be theoretical and generally quantitative, since for early

vision level of performance of an algorithm can be crucial. For a more extensive

survey the reader is referred to Davis (1975). For experimental comparisons the

reader should see Fram and Deutsch (1975), which compares several operators

applied to step edges in noise, and includes a comparison with human performance

on the same synthetic images. Abdou and Pratt (1979) compare local differential

and template matching operators based on a figure of merit which is very similar

to the performance criterion used in the present detector. This figure of merit was

introduced by Pratt (1978, p495) and is given by

F= 1 -A 1
- rax(11 , IA) I + ad2(i)
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p where I and IA are the number of ideal and actual edge points, d(i) is the distance

of the ith pixel from the true edge, and a is a scaling constant which determines

the trade-off between detection and localization.

7.1. Surface Fitting

There are a number of edge detectors that are based on some kind of image

surface modelling. These methods usually involve an initial parametrization of the

image surface in terms of some set of basis functions followed by the estimation

of the amplitude and position of the best-fitting step edge from the parameters.

One of the earliest examples of this method was the Prewitt operator (1970), which

used a quadratic set of basis functions. Another early example is the detector of

Hueckel (1971). Hueckel's method uses basis functions with circular support, and

tries to fit a single step edge to each circular area. The basis functions are chosen

so as to give an approximate Fourier Transform of the circular region. However,

as with most surface fitting schemes, the basis set is not complete (there are only

8 basis functions over a support of 52 pixels) and an edge is actually fitted to a

smoothed version of the original surface. An argument is presented to the effect

that the choice of a low-frequency subset of the complete space of basis functions

does not prejudice the ability of the operator to detect and localize edges, but proof

of this is not given. Instead it is argued that the high-frequency components should

be ignored because they will contain much of the image noise.

Another example of this approach is the work of Haralick. In Haralick's 1980

article, he proposes a fitting of the image by small planar surfaces or "facets".

Edges are marked at points which belong to two such facets when the parameters of

the two surfaces are inconsistent. The test for consistency is based on the goodness

of fit of each surface within its neighbourhood and uses a x-squared statistic. Again

the initial surface fitting invqlves a set of parameters which do not completely

represent the image surface. In this case there are 3 parameters.over a square

support of somewhere between 4 and 25 pixels. The three parameters are in fact

estimates of the x and y slope and the average value over the support.

In subsequent work on edge detection using a more general surface fitting
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technique, Ilaralick (1982) has used higher order polynomial basis functions with

larger operator supports. The later scheme locates edges at zero-crossings in the

second derivative of the modelled image surface in the image gradient direction. It

uses cubic polynomials (in x and y) as the basis functions over a square support of

(typically) 121 pixels. Interestingly, this choice of basis functions yields an operator

which can be shown to be quite similar to the operator described in this report.

However, if higher order or lower order polynomials are used, performance will be

worse. We now demonstrate this similarity.

The polynomials used are the discrete Chebychev polynomials, denoted P(r),

and for simplicity we will consider a one-dimensional problem. The objective of

surface fitting is to find the coefficients a, such that the sum

Q(r) = aiP(r) (7.8)

gives the best square-error fit to the actual sampled image surface I(r). That is we

seek to minimize the value of

C= Z ( -(r) - 1 aiPr) (7.9)

We do this by setting to zero the partial derivatives of e2 with respect to each
of the aj.

of the aj. 
Z ( (r) - a Pd~r))P j(r) = 0

This leads to the solution of a system of linear equations in the a3 , but in the

case where the polynomials are orthogonal the system is diagonal and the solution

is simply

R
a = E P,(r)I(r) (7.10)

where
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R

r=-R

The method then estimates the first and second partial derivatives of this

modelled surface. For example the first derivative is

d Qr d Pi(ro)

dr j=O dr

Substituting equation (7.10) into (7.11) we obtain

d R() d-Q ) = O - =- Pj(r)I(r)-P(O) (7.12)
£dr j=O P, r=-R d

The important thing to note about this equation is that it is linear in the

sampled image intensity, and that therefore the operation of surface fitting followed

by derivative estimation can be represented as a single convolution. We find the

equivalent filter for this convolution from (7.12). Since this expression has the form

of a discrete convolution over r, by removing the summation over r and the input

term I(r), we obtain the impulse response of the equivalent filter

f(r) E -Pj(r)-Pj(ro) (7.13)
o P) dr

The derivation of the expression for the second directional derivative is similar.

The next step in the surface fitting approach is to mark edges at zero-crossings

in the second directional derivative. These will correspond to maxima in the first

derivative given above. This puts us in the position of being able to directly compare

the surface fitting approach to the variational approach described in this report.

Both methods are effectively marking edges at the maxima in the output of the

convolution of the image with some linear operator. We can use the optimality

criteria that we defined for step edges to (analytically) evaluate the performance of

the surface fitting operator.
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The form of the equivalent filter depends directly on the choice of basis

functions P. The equivalent filter for the Chebychev basis polynomials up to

degree three is shown in figure (7.1). It turns out that the choice of cubic basis

polynomials gives the best approximation to the optimal operator derived in this

report. The perceptive reader may note that the surface fitting and gradient

estimation procedure is equivalent to convolving with a function that is the best

approximation to a derivative function (within the constraints imposed by the basis

functions) i.e. the filter has an impulse response that is the first derivative of a

delta function. Reference to (7.13) shows that as the order of the basis functions

becomes large, the filter f(r) tends to a simple local gradient estimator, similar to

the 3-pixel Prewitt operator. The equivalent filter for n = 7 is shown in the second

frame of figure (7.1).

Thus the 3-order Chebychev polynomials give the best performance with this

approach, while higher order polynomials lead to operators that are approximations

to local derivative operators. This answers one of the questions raised by Haralick

in his article as to what order of polynomial functions is best. The answer to the

other question raised, viz. what form of basis functions to use, can also be answered,

since his criteria of performance are essentially the same as ours. Note that these

criteria were used to experimentally evaluate the performance of the surface fitting

operator, but did not appear explicity in the design. The optimal surface fitting

operator for step edges would use a single basis function which is the first derivative

of Gaussian derived here. Fitting and gradient estimation using t is single basis

function is equivalent to convolution with the same function.

So we see that the ultimate performance of the surface fitting approach is

determined entirely by tile choice of basis functions. However, no analysis was done

in Ilaralick (1980) or in Hueekel (1970) as to the optimality of their respective

sets of functions. Other advocates of the surface fitting approach have made more

detailed analysis of the basis functions. For example Hummel (1978) suggested the

use of Karhunen-Loeve principal components for the basis functions.
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a

b

Figure 7. 1. Equivalent filters for cubic basis functions (a) and for basis functions
to degree 7 (b)

7.2. Derivative Estimation

Since an ideal step edge is a rapid transition from one intensity value to another,

it seems that a reasonable way to detect edges is to estimate some derivative of the

image intensity surface. Firstderivative detectors have been proposed by Roberts

(1965), Prewitt (1970), Rosenfeld and Thurston (1971), Macleod (1970) and a

variety of others. There has also been some interest in operators that estimate

the second derivative of the image intensity. The operator of Modestino and Fries

(1977) estimates a Gaussian smoothed Laplacian using a computationally efficient
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recursive filtering algorithm. llerskovits and Binford (1970) used a form of lateral

inhibition to reduce the sensitivity of their operator to slow gradients, and then

followed with first and second derivative estimation to locate the edges. Recently

there has been interest in operators which locate zero-crossings in the second

directional derivative in the gradient direction, viz. Havens and Strikwerda (1983),

Torre and Poggio (1983), Yuille (1983) and Haralick (1982).

We should note that the operator derived in chapters 2 and 3 has very strong

similarities to two of the above operators. In particular, we have been using the first

derivative of a Gaussian to approximate the optimal operator derived in chapter 2.

The simplest two-dimensional extension of this used a Gaussian projection function,

which results in a two-dimensional operator which is very similar to Macleod's.

It also bears a strong resemblance to the Marr-Hildreth operator, at least in one

dimension, as we shall see in a moment.I
It has been argued in this report that the optimal edge detection function

should be asymmetric (see section 2.1), and it may therefore be viewed as a first

derivative operator. However, it was not designed to optimally estimate gradient,

but to detect step edges. This distinction is subtle, but it should be stressed at this

point. The argument for derivative estimation is that the image gradient attains a

maximum at the centre of a step edge, and that therefore edges may be detected

by finding maxima in gradient. lowever, it does not follow that gradient is the

best measure to use to detect and localize edges. Marr and Hildreth (1980) suggest

the use of the slope of the output of the Laplacian of Gaussian operator. Again the

observation is that this quantity is proportional to the edge strength.

We should really be trying to estimate the "edgeness" of a potential edge.

However such a measure can only be defined implicitly by a variational equation,

such as equation (2.12). The tendency has been to use a posteriori measures, such

as gradient or zero-crossings of some derivative, as evidence of edges. The fact

that high gradients occur near edges do not mean that all points of high gradient

correspond to edges.

Since in one dimension the zero-crossing of second derivative operator (Marr

and Hildreth) is essentially the same (ignoring the thresholding question for the
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moment) as a maximum of first derivative operator, and both employ Gaus~ian

pre-convolution, we would expect similar performance from the two operators.

In two dimensions the extensions are different and performance is noticeably

different. We now show that the two dimensional Laplacian of Gaussian gives

poorer localization than the directional operator described in chapter 3. Let the

two-dimensional Laplacian of Gaussian be described by the equation

LX~y 2 ( 2 -2) exp( X2 + 2 )(7.14)
Now by the method of chapter 3, the standard deviation of the position of

the zero-crossing is the quotient of the slope of the zero-crossing at the edge centre

and the root mean squared noise in the operator output. Let the input be a step

of amplitude A in the y direction, i.e. the equation of the input S(x, y) is

S(x,y) = Au-_(x)

Then the slope of the zero-crossing is

d _ f ' AL(x, y) dy dx (7.15)

and the root mean squared output noise is

float! I: L 2(X, y) dy dzl (7.16)

Dividing (7.15) by (7.16) and substituting from (7.14) we find that the

localization AL of the Laplacian of Gaussian is just

AL = 1

',Ve compare this against the localization of a directional operator aligned with

the edge. Let the point spread function of this operator be described by the cquation
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S 2 (7.17)

Again we find the quotient of (7.15) and (7.16) and substitute from (7.17) and we

obtain for the localization of this operator

AD = V/ 1.63

So on average we would expect the positional error of the Laplacian of Gaussian

to be about 60% greater than that of a directional operator of the same a.

It has been suggested that the strength of a zero-crossing may be estimated

from the slope of the zero-crossing (normal to the edge direction). We should also

compare the signal to noise ratio of this measure with signal to noise ratio of the

first directional derivative. The slope of the zero-crossing of a Laplacian of Gaussian

is again given by equation (7.15), while the noise in this value can be found from

the integral

Y))d 2 dydxj (7.18)

This gives the Laplacian of Gaussian a signal to noise ratio EL, formed from

the quotient of equations (7.15) and (7.18), of

EL 3a

Finally we compare this value with the signal to noise ratio of the two-

dimensional directional derivative operator

D(z,y) = exp (- 
2  )

which turns out to have a E value of
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E, = 2a

This comparison shows that the directional first derivative operator betters the

Laplacian of Gaussian (with slope estimation) by a factor of slightly greater than

2 with respect to signal to noise ratio, and by a factor of about 1.6 with respect to

localization. In terms of the composite criterion EA we find that

EDAD = 4ELAL

The above result shows that the slope of a zero-crossing is a very poor estimator

for edge strength. While there are other possible choices for the edge amplitude

estimator, we also find that the Laplacian of Gaussian still suffers in localization

by comparison with a directional operator. The intuitive reason for this is that the

two-dimensional Laplacian may be decomposed into the sum of second derivatives

in (any) two orthogonal directions. If one of these is chosen to be normal to the edge

direction, it is clear that this contribution is exactly that of a directional operator.

But the second component, which will be parallel to the edge direction, contributes

nothing to localization but will increase the amount of noise.

7.3. Frequency Domain Methods

In this (rather small) category, we find one particular example of an approach

which used criteria very similar to ours, using a frequency domain derivation. We

might expect this formulation to lead to an operator very similar to ours. In fact

it did not, but this was due to a rather unfortunate restriction placed on the

possible solution. When the restriction is removed, we again obtain a function

which approximates a first derivative of a Gaussian.

The method is that of Shanmugam et a (1979), who pronosed the use of a

two-dimensional linear operator that approximates the Laplac.an of a C 'ussian.

Their criteria of optimality were that the function maximize the proportion of total

output energy confined to a fixed interval when it is convolved with a step edge.

Also the function must be strictly band-limited. These two criteria approximately

130



p

capture those of the present design. Maximizing the proportion of total output

energy in the interval will limit the range over which the maximum in the response

to a step edge can occur. Band-limiting greatly improves output signal to noise

ratio, since the spectrum of Gaussian noise is flat while the spectrum of a step edge

varies as the inverse of frequency, i.e. most of the energy in the edge is concentrated

at low frequencies.

Unfortunately, there are two steps in the method of Shanmugam et al which

the present author finds hard to justify. The first is that they made no attempt

to mark edge points, but instead thresholded filtered values were output. In fact

their filter gives two peaks in its response to an ideal step, but these are on either

side of the centre of the step, and the response at the centre is actually zero. This

was rectified to some extent in the work of Marr and Hildreth (1980) who used the

zero-crossings of the same filter, since these features occur at the centre of step

edges.

A second problem is that they assumed a priori that the operator they were

looking for would be trivially extensible to two dimensions by rotating it about

an axis of symmetry. This immediately restricted them to symmetric operators,

even in one dimension where the design was done. As we have seen in chapter 3,

this restriction is unnecessary, and actually degrades performance. In fact if the

restriction is removed, the same analysis leads to an operator that approximates

the first derivative of a Gaussian, as used in the current design. We repeat their

design without the assumption of symmetry now.

Once again we perform an optimization to find the function that extremizes

one criterion while another is kept contant. In this case the bandwidth of the

response Q1 will be fixed while the fraction of total output energy in an interval

[-1/2, +1/21 is maximized. i.e. if the output response is g(x) and the fraction of

the energy in thd interval is a," we maximize
r+1/2 2
J- 1/2 Ig(x) 2 d(.1)

0io ig(X)i 2 dx

We can make use of the fact that there exists a set of functions Vki(x) the

131



prolate spheroidal wave functions, that are band-limited, orthogonal over the

interval [-1/2, +1/21 and orthonormal over (-o, +oo). i.e.

f 1  ()v,(X) d x i,j 0,1,2,... (7.2)

+1/2o, i j

/2 i () p() dx t i, -- 0,1,2,... (7.3)

withXi < 1 for alli, andX 0 > XI > X2 > ...

The prolate spheroidal wave functions are complete in the space of band-limited

functions, and hence the output from any band-limited filter can be represented as

Sg(X) == E a.v¢ (c, X) (7.4)
n=O

Where the constant c is a function of the bandwidth and the size of the interval

QlI

2

When the expansion for g(x) is substituted into (7.1) using the results of (7.2)

and (7.3), the value of a becomes

_E-0 la,12x(7)
ni=o I,

The Xi are all positive and Xo > X, > X2 > ... , so a is bounded by

o< . o0o,, - Xo < 1
E=o Ian 2 0

The dpper bound is attained when an = 0 for n > 0, so the opfimr! o'"put r

g(z) = aoo(e, x) (7.6)
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Since this is the desired step response of the filter, we can obtain the impulse

response f(x) by differentiation.

f (x) = ao d )o(c, X) (7.7)

An approximation to the functions - z(c,x) due to Slepian (1965) can be used to

find a closed form expression for f(x).

0.(c,X) = 22- (n!)-I Hnc x)exp(c-)

where H(x) is a Hermite polynomial of degree n. This approximation is useful for

X < c - 1/ 4 and n < c. So po(c, x) may be approximated by a Gaussian for small

x, and the optimal spatial function f(x) will be the first derivative of a Gaussian

as before

f(x) = (kx)exp --- X )

In their original article, when Shanmugam et al (1979) assumed that the

function f(x) should be symmetric, they were restricted to the odd prolate spheroidal

functions ignoring 0(c, x) which in fact gives the best performance. The X,(c) may

be used as performance indices since they measure the fraction of the total energy in

the specified region for the corresponding ibi. The values of X0 may be significantly

higher than those of X1 for small values of c. The small values of c imply that the

product of spatial and frequency extent are minimal. For example at c = 0.5 the

value of X0 is about. 0.3 while the value of X1 is 0.0086 (see Slepian 1960).

The intent of this chapter has been to put the present edge detector in

context with several other well-known schemes. We have seen that there are strong

similarities in analytic form with several of these schemes, in particular with the

detectors of Marr and llildreth, Macleod, Haralick and Shanmugam et al. There

are also important differences, for example we have not yet considered the use of

multiple operators or of highly directional masks. Rosenfeld (1971) used several

133



sizes of difference of boxes, and formed a composite edge map by giving preference

to the largest operator which did not have a significantly lower response than the

next smaller operator. Marr (1976) argued both for highly directional operators

and for multiple scales, but reneged on the first requirement in later articles (1980)

mostly because of the apparent difficulty in implementating them. The present

design produces an edge map which is very similar in principle to the 1976 version

of the primal sketch, which was motivated purely by computational considerations.
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8. Conclusions and Suggestions for Further Work

We began this report with a precise definition of a set of goals for edge detection

and proceeded to derive an operator which best achieved these goals. The goals

were carefully chosen with minimal assumptions about the form of an optimal edge

operator. The constraints imposed were that we would mark edges at the maxima

in the output of a linear shift-invariant operator. By expressing the criteria as

functionals on the impulse response of the edge detection operator, we were able

to optimize over a large solution space, without imposing constraint on the form of

the solution.

Using this technique with an initial model of a step edge in white Gaussian

noise, in chapter 2 we found that there was a fundamental limit to the simultaneous

detection and localization of step edges. This led to a natural uncertainty relationship

between the localizing and detecting abilities of the edge detector. This relationship

in turn led to a powerful constraint on the solution, i.e. that there is a class of

optimal operators all of which can be obtained from a single operator by spatial

scaling. By varying the width of this operator it is possible to vary the trade-off

in signal to noise ratio versus localization, at the same time ensuring that for any

value of one of the quantities, the other will be maximized.

It was then found that the goals as originally specified were not well defined,

or rather that the analytic criteria did not articulate all that we expected of the

edge detector. By adding an explicit criterion related to multiple responses, we were

able to obtain an operator that met all of our intuitive design goals. The multiple

response constraint did add considerable complexity to the form of the solution and

in fact it was not possible to realize a solution in fully closed form. However, the

analysis was able to constrain the solution to a finite (low) dimensional parameter

space over which a numerical solution could be obtained. The impulse response of

the operator is a sum of damped exponential cosines, and it can be approximated

by the first derivative of a Gaussian.

We then extended the above operator to two dimensions and in doing so we

followed the framework that was established for the one-dimensional formulation
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in chapter 2. The basic criteria of detection and localization were the motivating

concerns in the extension to two dimensions. It was found that multiple operator

widths were necessary to deal with different signal to noise ratios in an image

because of the trade-off described above. We also found that directional operators

have clear advantages over non-directional operators, and that the more directional

an operator is, the better its potential performance. The traditional problems

associated with highly directional operators were dealt with by using a goodness

of fit measure to decide whether each directional operator could be used. We then

faced the considerable problem of combining all these feature descriptions into a

coherent whole. Once again we used the same set of design goals to guide the

heuristics for choosing the appropriate operator. Feature synthesis was presented

as a means of combining the outputs of operators whose responses to the same

feature axe not necessarily spatially coincident.

The first selection heuristic was to give preference to operators of minimum

width provided they had sufficient signal to noise ratio. This gives maximum

resolution and localization for a given global signal to noise ratio. The combination

of different operator widths was difficult because of the lack of spatial coincidence

of different operator outputs. It was necessary to use feature synthesis (examples

were given in chapter 6) for the operator integration.

The second heuristic was to favour highly directional operators whenever they

have sufficient quality of fit to the image. The integration of different operator

orientations was relatively simple and required only a slightly more complicated

form of non-maximum suppression. Examples of this technique were given in

chapter 6. It is unclear which goodness of fit measure should be used, and although

an algorithm was presented which performs adequately, there was no demonstration

of its optimality. In fact there is some evidence (section 6.4) that the human visual

system, which in other respects demonstrates similarities to the detector described

here, uses a different (or more complicated) decision procedure.

To make the convolution of images with the optimal operator more efficient, a

first derivative of a Gaussian approximation was used. This allowed us to use any

of the efficient algorithms presented in section 3.2 to speed things up. It was found
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that there exists an approximately "linear" time (in the width of a square mask)

algorithm for doing convolutions with arbitrary masks, and so eflicient convolution

is possible even without the approximation. E xperiments are now being performed

to determine the practicality of implementing this scheme in hardware.

In chapter 4 we were able to generalize the method used for step edges in

white Gaussian noise to arbitrary features and to non-white but stationary random

noise. In addition to a general form for the criteria, a fast numerical method for

the solution was described. This technique was then used to find optimal operators

for ridge and roof features. The ridge detector was extended to two dimensions,

and this was found to be much more difficult than for the edge operator because of

the lack of reliable information about the ridge direction. An example of the ridge

detector output appears in section (6.3), and was compared to the edge detector on

the same image.I
Finally in chapters 6 and 7 some comparisons were made between the edge

detector derived here, the Marr-Hildreth (1980) operator and the difference of boxes

operator. There were both analytic and experimental comparisons. It was also

compared to two other edge operators, those of Haralick (1982) and of Shanmugam

et al. (1979), and was found to be similar to all of these in one dimension. Chapter 6

also included several examples of the edge detector output on some natural scenes.

Finally we saw in section 6.5 some perceptual effects which seem to indicate that

the human visual system uses a similar feature combination scheme.

There are several directions in which the work in this report could be continued.

The most obvious is probably the area of integration of feature descriptions. The

algorithm as described in this report includes a feature synthesis method to combine

output of several operators of differing width. It could potentially be used to

combine the outputs of detectors for different features, such as the ridge detector

described in chapter 4. It may be possible to form criteria on the performance of a

feature integration scheme. Two possible criteria are

(i) The integration scheme should not miss features. If a single feature is marked

by one of the detectors, it should be marked in the integrator output. Also,

if two feature detectors are responding at the same point in a way that is
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not consistent with there being only a single feature in the image, then tile

integrator should mark both features on the output.

(ii) The integration scheme should produce an output with minimal redundancy.

An obvious scheme which performs well according to criterion (i would be to

simply mark everything seen by any feature detector. In this case no integration

of feature information is occurring, e.g. it is unnecessary to mark a ridge as

two parallel closely spaced edges if it has already been identified for what it

is. The feature integrator may be viewed as a filter on the outputs of all the

feature detectors which removes redundant information.

Both of the above criteria require a scheme which is non-local, that is it must

take into account the outputs of nearby feature detectors, not just those at a single

point. Feature synthesis is a non-local scheme as is the surface fitting approach

used in the Topographic Primal Sketch of Haralick (1983). It would be worth

comparing the two schemes according to the above criteria. The difficulty with

using an optimization scheme to find an optimal feature integrator is that a much

more complicated image model would be necessary. At the very least it would need

to include all those features for which the individual detectors were designed, and

presumably all possible combinations of those features.

Another possible extension of the edge detector would be to 3 or more

dimensions. We have already seen in chapter 3 that there is a simple extension of

the optimal operator to n dimensions. This operator locates n - 1 surfaces (the

n-dimensional extension of edge contours) where discontinuities in intensity occur.

Using highly directional operators is more difficult in this domain because of the

large number of directions needed to uniformly cover an n-sphere. Non-maximum

suppression is also more complicated for the same reason.

In particular it is possible to consider the detection of moving edges as a three

dimensional edge detection problem, where the third dimension is the time axis.

Edges in this three dimensional space correspond to edges in the two-dimensional

image or to points of rapidly changing irradiance. The direction of the edge in

the three-space can be used to determine the velocity or the two-dimensional edge.

There is a constraint that the time-space edge filter must be causal, that is it must
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depend ortly on past and present intensity values. Using a filker that is broad in the

time domain will introduce a delay into the velocity estimate. Thus the d,'ign of

the time domain filter is a separate optimization problem which requires additional

constraints of causality and minimal time delay.

One final generalization of the techniques described in this report would be

to relax the restriction of linearity on the operator. Shift invariance is clearly a

desirable property of an edge detection operator, but it is not clear that the optimal

operator must be linear. In fact the composite operator derived in this report is

non-linear because it involves a non-local predicate (from the feature synthesis

scheme) applied to several operator outputs. Ideally this constraint should be either

relaxed or it should be proven that linear operators can perform as well as non-linear

operators. The restriction to linear operators here was necessary because of the

sheer complexity of parametrizing a non-linear shift invariant operator in a form

which would allow variational methods to be applied. It remains to be seen whether

this restriction penalizes performance, and whether an unconstrained non-linear

operator can do any better.
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Appendix i. I)efinite Integrals used i,6 the Derivations

These integrals were referred to in chapter 2 but were not included there

because of their excessive length. There are 3 integrals required to evaluate (2.12),

and an additional integral is neccesary for (2.24). Of these 4 integrals, 3 can be

written in the same parametric form, because they all involve the integral of the

square of a function of the form

g(z) = cle" sin wx + c2e * cos wz + c3e- *' sin wx + c 4e-"a cos wx

We now define

Ii(CI,C 2,C3,C4) = g(x) dx and 12(Cl,c2,C3,C4) 9 ~ 2 (x) dx

And we find that all of the integrals in the performance criteria can be written

in terms of I and 12 thus

,f(x)dx = II(al,a 2 ,a 3,a)+c

f+1 f 2(x)dx = I2(al,a 2,a3, a4) + 4c11(al,a2,a3, a4)- 2C

f,2(x) dx = I2(,al - wa2, ca2 + wal, -a 3 - wa4, -fa + wa3)

J+I f 2 ( ) dz = 12(fla i - "ya2, f3a2 + Yal, Pa3 + a4, l a4  - a3)

where
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3 - _ a 2  and /--2aw

The closed form for the definite integral II in terms of a, w, and cl through

c4 and for a unit interval (W =- 1) is

I(CIC 2 ,C3 ,C4 ) - I (cle(a sin w - w cos ) + wc

+c2e 0 (w sin w + a cos w) - ac2

+C3e-(a sin w + W COSw) - WC3

+c 4e-a(w sin w - a cosw) + aC4)

Similarly the closed form for 12 over the unit interval is

2(CIC 2 ,C3 , C4 ) - 1 (c2e2a(-aw2 sin 2w - a 2w cos 2w + w 3 + a 2w) - c w3

2aw3 + 2wa 3 1

+ce 2 (CW2 sin 2w + a 2 w cos 2&w + w 3 + a 2w)
-C2(W -- 2a 2 W)

+C2e 2 a (-aw sin 2w + a 2w cos 2w - w3 -
2 w) + c 2w 3

+c2e - 2a(aw2 sin 2w - a 2 w cos 2w - w 3 - a 2w)

+c 2(W3 + 2a 2W)
+2cIC 2e 2 a(a 2 sin 2w - aw 2 cos 2wj) + 2ciC2aw 2

+2cIc3(a( 3 + aw 2 )(2w - sin 2w)

-4(cIc4 + c2c3)(a 3 + aw 2 ) sin 2 w

+2c 2c4(a 3 + aw 2)(2w + sin 2w)

+2csc 4 e- 2 (a 2 W sin 2w - aw 2 cos 2w) + 2c 3 c4 aW2)
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